Communication
doi.org/10.1002/chem.202100762
Chemistry—A European Journal
[1] For selected general reviews on the chemistry of aziridines, see: a) J. B.
Sweeney, Chem. Soc. Rev. 2002, 31, 247; b) Aziridines and Epoxides in
Organic Synthesis (Ed.: A. K. Yudin), Wiley-VCH, Weinheim, 2006; c) G. S.
Singh in Advances in Heterocyclic Chemistry, Vol. 129 (Eds.: E. F. V.
Scriven, C. A. Ramsden), Academic Press, San Diego, 2019, Chapter 4,
pp. 245–335.
[2] For selected reviews on the synthetic utility of aziridines, see: a) X. E.
Hu, Tetrahedron 2004, 60, 2701; b) G. S. Singh, M. D’hooghe, N.
De Kimpe, Chem. Rev. 2007, 107, 2080; c) P. Lu, Tetrahedron 2010, 66,
2549; d) S. Florio, R. Luisi, Chem. Rev. 2010, 110, 5128; e) C. Botuha, F.
Chemla, F. Ferreira, A. Pérez-Luna in Heterocycles in Natural Product
Synthesis (Eds.: K. C. Majumdar, S. K. Chattopadhyay), Wiley-VCH,
Weinheim, 2011, Chapter 1, pp. 3–39; f) S. Stanković, M. D’hooghe, S.
Catak, H. Eum, M. Waroquier, V. Van Speybroeck, N. De Kimpe, H.-J. Ha,
Chem. Soc. Rev. 2012, 41, 643; g) G. Callebaut, T. Meiresonne, N.
De Kimpe, S. Mangelinckx, Chem. Rev. 2014, 114, 7954; h) S. Sabir, G.
Kumar, J. L. Jat, Asian J. Org. Chem. 2017, 6, 782.
followed by N-sulfamidation delivered the densely functional-
ized bicyclic diene 6 in 72% yield, which could not be accessed
efficiently by other known methods. Upon treatment of diene 6
°
with N-Ph maleimide at 120 C, structurally complicated
tetracyclic (4+2) cycloadduct 7 could be constructed via endo-
selectivity in 89% yield. Moreover, an additional example using
7,3,6-tricyclic aziridine 2o bearing the bridgehead double-bond
was also carried out for its synthetic transformation. Under
°
hydrogenation conditions (Pd/C, H2 (balloon), THF, 25 C), a
chemoselective allylic cleavage of vinyl aziridine 2o gave α-
amino ketone 8a having an azabicyclo[5.3.1]undecane skeleton
through SN2-type reductive ring-opening. Importantly, the
unexpected lability of 8a during its chromatographic purifica-
tion and recrystallization disclosed an interesting observation
that α-amino ketone unit in 8a could partially undergo an
insertion reaction with CO2 in air, affording the tricyclic 2-
oxazolidone-hemiketal 8b.[20] Based on this serendipitous result,
a combined protocol involving hydrogenation (Pd/C, H2, THF),
carbamation (CO2, THF), and deketalization (HBF4, THF) was
then adopted to directly access to 5,6,8-tricyclic 9 bearing a
unique bridgehead double bond in 57% yield in one pot.
Notably, all relative configurations of N-(4-BrC6H4SO2)-3a, 4b,
5a, 7, 8b, and 9 resulting from the above transformations have
been confirmed by X-ray crystallographic analyses.[14]
[3] For recent reviews on the synthesis of aziridines, see: a) H. Pellissier,
Tetrahedron 2010, 66, 1509; b) J. W. W. Chang, T. M. U. Ton, P. W. H.
Chan, Chem. Rec. 2011, 11, 331; c) D. Karila, R. H. Dodd, Curr. Org. Chem.
2011, 15, 1507; d) L. Degennaro, P. Trinchera, R. Luisi, Chem. Rev. 2014,
114, 7881.
[4] For selected examples involving azides, see: a) A. L. Logothetis, J. Am.
Chem. Soc. 1965, 87, 749; b) H. Kwart, A. A. Khan, J. Am. Chem. Soc.
1967, 89, 1951; c) A. Mishra, S. N. Rice, W. Lwowski, J. Org. Chem. 1968,
33, 481; d) J. T. Groves, T. Takahashi, J. Am. Chem. Soc. 1983, 105, 2073;
e) S. A. Cramer, D. M. Jenkins, J. Am. Chem. Soc. 2011, 133, 19342; f) E. C.
McLaughlin, A. Shrestha, M. H. Fletcher, N. S. Steinauer, M. K. Shinn,
S. M. Shahid, Tetrahedron Lett. 2013, 54, 5461; g) S. O. Scholz, E. P.
Farney, S. Kim, D. M. Bates, T. P. Yoon, Angew. Chem. Int. Ed. 2016, 55,
2239; Angew. Chem. 2016, 128, 2279; h) H. Jiang, K. Lang, H. Lu, L.
Wojtas, X. P. Zhang, J. Am. Chem. Soc. 2017, 139, 9164; i) C. L. Keller, J. L.
Kern, B. D. Terry, S. Roy, D. M. Jenkins, Chem. Commun. 2018, 54, 1429;
j) Y. Zhang, X. Dong, Y. Wu, G. Li, H. Lu, Org. Lett. 2018, 20, 4838.
[5] For selected examples involving iminoiodinanes, see: a) D. Mansuy, J.-P.
Mahy, A. Dureault, G. Bedi, P. Battioni, J. Chem. Soc., Chem. Commun.
1984, 20, 1161; b) L. Ma, D.-M. Du, J. Xu, J. Org. Chem. 2005, 70, 10155;
c) S. K.-Y. Leung, W.-M. Tsui, J.-S. Huang, C.-M. Che, J.-L. Liang, N. Zhu, J.
Am. Chem. Soc. 2005, 127, 16629; d) M. Nakanishi, A.-F. Salit, C. Bolm,
Adv. Synth. Catal. 2008, 350, 1835; e) J. Llaveria, Á. Beltrán, W. M. C.
Sameera, A. Locati, M. M. Díaz-Requejo, M. I. Matheu, S. Castillón, F.
Maseras, P. J. Pérez, J. Am. Chem. Soc. 2014, 136, 5342.
[6] For selected examples involving sulfilimines, see: a) Y. Hayashi, D.
Swern, Tetrahedron Lett. 1972, 13, 1921; b) N. Furukawa, M. Fukumura,
T. Nishio, S. Oae, J. Chem. Soc., Perkin Trans. 1 1977, 96; c) T. Fujita, T.
Maeda, B. J. Kim, A. Tatami, D. Miyamoto, H. Kawaguchi, N. Tsuchiya, M.
Yoshida, W. Kawashima, H. Morita, J. Sulfur Chem. 2008, 29, 459; d) V.
Desikan, Y. Liu, J. P. Toscano, W. S. Jenks, J. Org. Chem. 2008, 73, 4398.
[7] For selected examples involving haloamine-T, see: a) T. Ando, S.
Minakata, I. Ryu, M. Komatsu, Tetrahedron Lett. 1998, 39, 309; b) R. Vyas,
B. M. Chanda, A. V. Bedekar, Tetrahedron Lett. 1998, 39, 4715; c) D. P.
Albone, P. S. Aujla, P. C. Taylor, J. Org. Chem. 1998, 63, 9569; d) A. M. M.
Antunes, S. J. L. Marto, P. S. Branco, S. Prabhakar, A. M. Lobo, Chem.
Commun. 2001, 37, 405; e) K. A. Kumar, K. M. L. Rai, K. B. Umesha,
Tetrahedron 2001, 57, 6993.
In conclusion, an unprecedented hypervalent iodine(III)-
mediated tandem oxidative dearomatization/aziridination reac-
tion of phenolic amines has been developed for the first time,
providing
a new method for the effective synthesis of
structurally diverse functionalized unactivated aziridines. Based
on this cascade methodology, several protocols initiated by
regioselective ring opening of vinyl aziridines have been
representatively shown to efficiently lead to synthetically
versatile nitrogen-containing heterocycles; the related trans-
formations, particularly involving the incorporation of CO2 and
Burgess reagent, have been exploited for their synthetic
potential. The present tandem reaction consisting of the
oxidative dearomatization of phenols and the aziridination of
aliphatic primary amines not only enriches the synthetic
chemistry of functionalized aziridines, but also expands syn-
thetic application of the hypervalent iodine chemistry.
[8] For selected examples involving hydroxylamine derivatives, see: a) W.
Lwowski, T. J. Maricich, J. Am. Chem. Soc. 1965, 87, 3630; b) J. C. Bottaro,
J. Chem. Soc., Chem. Commun. 1980, 16, 560; c) G. Cerichelli, A. Freddi,
M. A. Loreto, L. Pellacani, P. A. Tardella, Tetrahedron 1992, 48. 2495;
d) M. Barani, S. Fioravanti, M. A. Loreto, L. Pellacani, P. A. Tardella,
Tetrahedron 1994, 50, 3829; e) A. Armstrong, C. A. Baxter, S. G. Lamont,
A. R. Pape, R. Wincewicz, Org. Lett. 2007, 9, 351; f) H. Lebel, C. Spitz, O.
Leogane, C. Trudel, M. Parmentier, Org. Lett. 2011, 13, 5460; g) J. L. Jat,
M. P. Paudyal, H. Gao, Q.-L. Xu, M. Yousufuddin, D. Devarajan, D. H. Ess,
L. Kürti, J. R. Falck, Science 2014, 343, 61; h) Z. Ma, Z. Zhou, L. Kürti,
Angew. Chem. Int. Ed. 2017, 56, 9886; Angew. Chem. 2017, 129, 10018;
i) J. J. Farndon, T. A. Young, J. F. Bower, J. Am. Chem. Soc. 2018, 140,
17846.
[9] For selected examples involving carbamates, see: a) C. J. Hayes, P. W.
Beavis, L. A. Humphries, Chem. Commun. 2006, 42, 4501; b) J. W. Rigoli,
L. A. Boralsky, J. C. Hershberger, D. Marston, A. R. Meis, I. A. Guzei, J. M.
Schomaker, J. Org. Chem. 2012, 77, 2446.
[10] For selected examples involving sulfonamides, see: a) P. Dauban, L.
Sanière, A. Tarrade, R. H. Dodd, J. Am. Chem. Soc. 2001, 123, 7707; b) K.
Guthikonda, J. Du Bois, J. Am. Chem. Soc. 2002, 124, 13672; c) S.
Acknowledgements
We are grateful for financial support from NSFC (21825104,
22071091, 21801103, 22001104), FRFCU (lzujbky-2020-40),
PCSIRT (IRT_15R28), and the 111 Project of MOE (111-2-17).
Conflict of Interest
The authors declare no conflict of interest.
Keywords: Aziridines · cascade reactions · dearomatization ·
iodine · oxidation
Chem. Eur. J. 2021, 27, 1–7
5
© 2021 Wiley-VCH GmbH
��
These are not the final page numbers!