Angewandte
Chemie
P. G. Kremsner, Antimicrob. Agents Chemother. 2003, 47, 735 –
738.
where Irel is the relative fluorescence intensity at the recorded
emission wavelength, Imax the maximal fluorescence enhance-
ment of bound inhibitor at saturation, and Fo is the concentration
of the fluorophore. Background emissions of 7–9 (from 0–24 mm)
as well as of IspF in 50 mm Tris hydrochloride, pH 8.2, containing
10 mm MgSO4 and 2 mm Zn(OAc)2, were subtracted to obtain
the saturation curves shown in Figure 2. The relative fluores-
[3] H. Jomaa, J. Wiesner, S. Sanderbrand, B. Altincicek, C.
Weidemeyer, M. Hintz, I. Türbachova, M. Eberl, J. Zeidler,
H. K. Lichtenthaler, D. Soldati, E. Beck, Science 1999, 285,
1573 – 1576.
[4] a) W. Eisenreich, M. Schwarz, A. Cartayrade, D. Arigoni, M. H.
Zenk, A. Bacher, Chem. Biol. 1998, 5, R221 – R233; b) M.
Rohmer, M. Knani, P. Simonin, B. Sutter, H. Sahm, Biochem. J.
1993, 295, 517 – 524.
[5] a) M. K. Schwarz, PhD Dissertation, ETH Zürich, No. 10951,
1994; b) W. Eisenreich, B. Menhard, P. J. Hylands, M. H. Zenk,
A. Bacher, Proc. Natl. Acad. Sci. USA 1996, 93, 6431 – 6436;
c) S. T. J. Broers, PhD Dissertation, ETH Zürich, No. 10978,
1994.
[6] a) F. Rohdich, S. Hecht, A. Bacher, W. Eisenreich, Pure Appl.
Chem. 2003, 75, 2 – 3, 393 – 405; b) Y. Boucher, W. F. Doolittle,
Mol. Microbiol. 2000, 37, 703 – 716; c) F. Rohdich, J. Wungsinta-
weekul, M. Fellermeier, S. Sanger, S. Herz, K. Kis, W. Eisenreich,
A. Bacher, M. H. Zenk, Proc. Natl. Acad. Sci. USA 1999, 96,
11758 – 11763.
[7] For selected publications, see: a) F. Rohdich, W. Eisenreich, J.
Wungsintaweekul, S. Hecht, C. A. Schuhr, A. Bacher, Eur. J.
Biochem. 2001, 268, 3190 – 3197; b) S. B. Richard, J.-L. Ferrer,
M. E. Bowman, A. M. Lillo, C. N. Tetzlaff, D. E. Cane, J. P. Noel,
J. Biol. Chem. 2002, 277, 8667 – 8672; c) T. L. Campbell, E. D.
Brown, J. Bacteriol. 2002, 184, 5609 – 5618.
[8] a) S. Steinbacher, J. Kaiser, J. Wungsintaweekul, S. Hecht, W.
Eisenreich, S. Gerhardt, A. Bacher, F. Rohdich, J. Mol. Biol.
2002, 316, 79 – 88; b) L. E. Kemp, C. S. Bond, W. N. Hunter,
Proc. Natl. Acad. Sci. USA 2002, 99, 6591 – 6596.
[9] Published crystal structures of IspF: a) H. Kishida, T. Wada, S.
Unzai, T. Kuzuyama, M. Takagi, T. Terada, M. Shirouzu, S.
Yokoyama, J. R. H. Tame, S.-Y. Park, Acta Crystallogr. D 2003,
59, 23 – 31; b) S. Ni, H. Robinson, G. C. Marsing, D. E. Bussiere,
M. A. Kennedy, Acta Crystallogr. D 2004, 60, 1949 – 1957; c) C.
Lehmann, K. Lim, J. Toedt, W. Krajewski, A. Howard, E.
Eisenstein, O. Herzberg, Proteins: Struct. Funct. Bioinf. 2002, 49,
135 – 138; d) L. E. Kemp, M. S. Alphey, C. S. Bond, M. A. J.
Ferguson, S. Hecht, A. Bacher, W. Eisenreich, F. Rohdich, W. N.
Hunter, Acta Crystallogr. D 2005, 61, 45 – 52; e) T. Sgraja, L. E.
Kemp, N. L. Ramsden, W. N. Hunter, Acta Crystallogr. F 2005,
61, 625 – 629.
[10] a) P. R. Gerber, K. Müller, J. Comput.-Aided Mol. Des. 1995, 9,
251 – 268; b) Gerber Molecular Design (http://www.moloc.ch).
[11] For structure-based design of inhibitors of plasmepsin II,
another potential target in antimalarial therapy, see: D. Carc-
ache, S. Hörtner, A. Bertogg, C. Bonkert, D. Bur, H. P. Märki, A.
Dorn, F. Diederich, ChemBioChem 2002, 3, 1137 – 1141.
[12] a) Y.-H. Li, L.-M. Chan, L. Tyler, R. T. Moody, C. M. Himel,
D. M. Hercules, J. Am. Chem. Soc. 1975, 97, 3118 – 3126; b) F.
Diederich, K. Dick, D. Griebel, Chem. Ber. 1985, 118, 3588 –
3619.
cence enhancements (ImaxꢁI)/I, where
I is the maximum
fluorescence of the unbound inhibitor, were 20% (7), 30% (8),
and 80% (9). Binding data were analyzed by nonlinear least-
squares approximation (GraphPad Prism 4 Software, San Diego,
CA, 2005). Uncertainties given are standard deviations, with R2
for all fits ꢂ 0.96); b) R. S. Sarfati, V. K. Kansal, H. Munier, P.
Glaser, A.-M. Gilles, E. Labruyꢀre, M. Mock, A. Danchin, O.
Bꢁrzu, J. Biol. Chem. 1990, 265, 18902 – 18906; c) W. O.
McClure, G. M. Edelman, Biochemistry 1967, 6, 559 – 566.
[16] The IC50 values for CMP, CDP, and 9 were determined in
enzymatic reactions catalyzed by the E. coli IspF enzyme using
[1,3,4-13C3]-5 (1 mm) as substrate. Product formation was moni-
tored by 13C NMR spectroscopy (see the Supporting Informa-
tion).
[17] a) Crystals of E. coli IspF complexed with ligands 7 or 9 were
grown by the vapor-diffusion method.[8b] The reservoir solution
was 0.1m ammonium sulfate and 0.1m sodium acetate, pH 5, and
10% and 8% monomethylether polyethylene glycol 200 for
compounds 7 and 9, respectively. The hanging drops consisted of
1 mL of reservoir and 3 mL of a solution of IspF (5.5 mgmLꢁ1) in
50 mm Tris (tris(hydroxymethyl)aminomethane) hydrochloride,
pH 7.7, containing 50 mm NaCl and 2 mm ligand. Crystals of the
complex with 7 are monoclinic plates in the space group P21 with
unit cell dimensions a = 54.03, b = 115.27, c = 87.61 , b =
90.188. Crystals of the complex with 9 are cubic blocks in the
space group I213 with a = 145.1 . Data were measured on
beamline ID29 at the European Synchrotron Radiation Facility
(Grenoble, France) and processed with MOSFLM (A. G. W.
Leslie, H. R. Powell, G. Winter, O. Svensson, D. Spruce, S.
McSweeney, D. Love, S. Kinder, E. Duke, C. Nave, Acta
Crystallogr. D 2002, 58, 1924 – 1928). The dataset for the complex
of 7 is 99.5% complete to 2.3- resolution with an Rsym value of
9.7%, 27.1% in the highest resolution bin. The dataset for the
complex of 9 is 99% complete to 2.5- resolution with an Rsym
value of 8%, 68.5% in the highest resolution bin. The starting
model for both analyses was the structure of E. coli IspF in
complex with CDP (PDB code 1GX1). Molecular replacement
methods (Collaborative Computational Project Number 4, Acta
Crystallogr. D 1994, 50, 760–763; J. Navaza, Acta Crystallogr.
Sect. D 2001, 57, 1367 – 1372) were used to generate the starting
models for refinement, which consisted of six subunits (two
trimers) for the complex with 7 and a single subunit for the
complex with 9. The structures were refined using a combination
of O (T. A. Jones, J. Y. Zou, S. W. Cowan, M. Kjeldgaard, Acta
Crystallogr. A 1991, 47, 110 – 119) and refmac5 (G. N. Murshu-
dov, A. A. Vagin, E. J. Dodson, Acta Crystallogr. D 1997, 53,
240 – 255) to an R factor of 24.3% and R-free of 27.9% for the
complex with 7; an R factor of 21.5% and R-free of 25.9% for
the complex of 9. The model for the complex of 7 includes 233
water molecules, six ZnII ions, one in each active site and two
molecules of geranyldiphosphate (GPP).[9d] A total of 92.1% of
the residues are in the most favored regions of the Ramachan-
dran plot with none in disallowed regions. The model for the
complex of 9 includes 56 water molecules, a ZnII ion, and one
geranyldiphosphate; 90.8% of the residues are in the most
favored regions of the Ramachandran plot with none in
disallowed regions. Further details are included in the Protein
Data Bank depositions PDB codes: 2AMT and 2AO4; b) It
should be noted that a screen of crystallization conditions were
[13] M. Saady, L. Lebeau, C. Mioskowski, Tetrahedron Lett. 1995, 36,
2239 – 2242.
[14] V. Wittmann, C.-H. Wong, J. Org. Chem. 1997, 62, 2144 – 2147.
[15] a) The fluorescent inhibitors 7–9 were titrated into a solution
(2 mL) of IspF (17 kDa per subunit) from E. coli (6.25 mm) in
50 mm Tris hydrochloride, pH 8.2, containing 10 mm MgSO4 and
2 mm ZnO(Ac)2 in a total volume of 3 mL at 208C (Tris =
tris(hydroxymethyl)aminomethane). Spectral data were
recorded at lexc = 320 nm, lem = 423 nm for compounds 7 and 8,
and lexc = 366 nm, lem = 532 nm for 9, using a Hitachi F-2000
fluorescence spectrophotometer (1-cm quartz cuvette, 3-mL
volume). Kd values were derived using Equation (1):
I
rel = (Imax Fo)(Kd + Fo)ꢁ1
(1),
Angew. Chem. Int. Ed. 2006, 45, 1069 –1074
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1073