C6H3), 125.52, 124.26 (m-C on C6H3), 99.94 (g-C), 29.10, (CHMe2), 28.92
(CHMe2), 25.30, 25.25 (CHMe2) 24.37 (CMe) 1.93, 0.99 [Si(CH3)3]. The
isomeric product 2 was obtained by decanting the supernatant liquid from 1
and cooling in a ca. 220 °C freezer for 48 h to afford colorless crystals of
2 (0.52 g, 54%). Mp 161–163 °C. 1H NMR (300 MHz C6D6) d 7.15 (s, 6H,
aromatic H or Ar groups), 4.83 (s, 1H, methine CH), 3.60 (sept, 3JHH 6.6 Hz,
2H, CHMe), 3.29 (sept, 3JHH 6.6 Hz, 2H, CHMe), 1.48 (d, 3JHH 6.6 Hz, 6H,
3
CHMe2), 1.44 (d, JHH 6.6 Hz, 6H, CHMe2), 1.40 (s, 6H, CMe), 1.16 (d,
3JHH 6.6 Hz, 6H, CHMe2), 1.11 (d, 3JHH 6.6 Hz, 6H, CHMe2), 0.23, 0.41 [s,
9H, Si(CH3)3]: 13C{1H} (75 MHz, C6D6) d 171.39 (CN), 145.11 (CMe)
144.25, 141.01 (o-C on C6H3), 128.08 (p-C on C6H3), 125.58, 124.92 (m-C
on C6H3), 100.32 (g-C), 29.09, 28.45 (CHMe2), 25.93, 25.58 (CHMe2),
25.25 (CMe), 25.09, 24.82 (CHMe2), 5.90, 5.78 [Si(CH3)3].
‡ Professor H. W. Roesky has informed us that a similar reaction involving
{HC(MeCDippN)2}Al: and N3SiMe3 affords the aluminium analog of 1.
The contrasting behavior of the gallium system, with its preference for the
amide/azide over the tetrazole product, is another illustration of the
differences between aluminium and gallium chemistry.
Fig. 2 Thermal ellipsoid (30%) plot of 2 with H atoms not shown. Selected
bond distances (Å) and angles (°): Ga(1)–N(1) 1.946(1), Ga(1)–N(2)
1.958(1), Ga(1)–N(3) 1.884(1), Ga(1)–N(4) 1.918(1), Si(1)–N(3) 1.746(1),
Si(2)–N(3) 1.751(1); N(1)–Ga(1)–N(2) 98.28(5), N(3)–Ga(1)–N(4)
111.82(6), N(1)–Ga(1)–N(3) 122.45(5), N(2)–Ga(1)–N(3) 113.23(5),
Ga(1)–N(3)–Si(1) 123.39(7), Ga(1)–N(3)–Si(2) 115.32(7).
§ Attempts at thermal interconversion of 1 and 2 have so far been
unsuccessful.
¶ Crystal data for 1 and 2 at 90 K with Mo-Ka radiation (l = 0.71073 Å):
1: C35H59GaN6Si2, M
= 689.78, colorless parallelepiped, monoclinic,
space group P21/n, a = 12.3462(4), b = 21.9781(7), c = 14.0957(4) Å, b
= 91.064(1)°, Z = 4, Dc = 1.198 g cm23, m = 0.813 mm21, R1 = 0.0454
for 4934 [I > 2s(I)] data.
2: C35H59Ga2N6Si2, M = 689.78, colorless parallelepiped, orthorhombic,
space group Pbcn, a = 20.1655(8), b = 17.8134(7), c = 21.546(9) Å, Z =
8, Dc = 1.200 g cm23, m = 0.815 mm21, R1 = 0.0354 for 9374 [I > 2s(I)]
b100466m/ for crystallographic data in .cif or other electronic format.
∑ Non-isomeric amide/azide and tetrazole derivatives of germanium have
been obtained by reaction of Ge(II) species with azides that have different
substituents. See ref. 14.
The structure of amide/azide compound 2 (Fig. 2) also
features gallium bound to four nitrogens in a distorted
tetrahedral fashion. The Ga–N(b-diketiminate) bonds [av.
1.952(7) Å] have very similar lengths to the corresponding
bonds in 1. The b-diketiminate ring is folded along the
N(1)…N(2) axis such that Ga( ) lies ca. 0.21 Å from the
I
averaged N2C3 plane. The Ga–N(SiMe3)2 bond length [1.884(1)
Å] is close to the 1.872(2) Å reported for {Cp*{(Me3-
Si)2N}Ga(m-N3)}2.7 The Ga–N(azide) bond length, 1.918(3) Å,
is essentially the same as the 1.921(4) Å observed in a bulky
aryl-substituted bis(azide) of gallium.11 Within the N3 moiety,
the N–N distances are similar to those previously observed in
gallium azides.12 Like 1, compound 2 displays two different
resonances for the SiMe3 peaks—probably due to restricted
rotation of the amide moiety around the Ga–N bond as a result
of steric effects. Rotational barriers as high as 18.6 kcal mol21
have been observed for group 13 metal–nitrogen bonds in
1 For example: J. Feldman, S. J. McLain, A. Parthasarathy, W. J.
Marshall, J. C. Calabrese and S. D. Arthur, Organometallics, 1997, 16,
1514; M. F. Lappert and D.-S. Liu, J. Organomet. Chem., 1995, 500,
203; B. Qian, D. L. Ward and M. R. Smith, Organometallics, 1998, 17,
3070; V. C. Gibson, P. J. Maddox, C. Newton, C. Redshaw, G. A. Solar,
A. J. P. White and D. J. Williams, Chem. Commun., 1998, 651; P. H. M.
Budzelaar, R. de Gelder and A. W. Gal, Organometallics, 1998, 17,
4121; W.-K. Kim, M. J. Fevola, L. M. Liable-Sands, A. L. Rheingold
and K. H. Theopold, Organometallics, 1998, 17, 4541; M. Chen, E. B.
Lobkovsky and G. W. Coates, J. Am. Chem. Soc., 1998, 120, 11 018;
L. W. M. Lee, W. E. Piers, M. R. J. Elsegood, W. Clegg and M. Parvez,
Organometallics, 1999, 18, 2947; B. Qian, W. J. Scanlon, M. R. Smith,
III and D. H. Motry, Organometallics, 1999, 18, 1693; C. E. Radzewich,
I. A. Guzei and R. F. Jordan, J. Am. Chem. Soc., 1999, 121, 8673; B.
Qian, S. W. Bach and M. R. Smith, Polyhedron, 1999, 18, 2405; P. L.
Holland and W. B. Tolman, J. Am. Chem. Soc., 1999, 121, 7270; P. L.
Holland and W. B. Tolman, J. Am. Chem. Soc., 2000, 122, 6331; C. Cui,
H. W. Roesky, H. Hao, H.-G. Schmidt and M. Noltemeyer, Angew.
Chem., Int. Ed., 2000, 39, 1815.
1
sterically congested systems.13 Variable temperature H NMR
studies of 1 or 2 in toluene did not result in the collapse of the
SiMe3 signals to a single resonance.
The isolation of tetrazole–amide/azide isomers appears to be
unique.∑14 Their stability can be rationalized on the basis of the
size of the [HC(MeCDippN)2]2 ligand which prevents dimer-
ization of the intermediate {HC(MeCDippN)2}GaNSiMe3, but
allows reaction with a further equivalent of the less hindered
N3SiMe3. Owing to the multipolar nature of the NNNSi array,
this reaction proceeds by two distinct pathways to afford 1 and
2.
2 C. Cui, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, H. Hao and F.
Cimpoesu, Angew. Chem., Int. Ed., 2000, 39, 4274.
3 N. J. Hardman, B. E. Eichler and P. P. Power, Chem. Commun., 2000,
1911.
4 C. Dohmeier, C. Robl, M. Tacke and H. Schnöckel, Angew. Chem., Int.
Ed. Engl., 1991, 30, 564.
We thank the National Science Foundation for Financial
Support.
5 D. Loos and H. Schnöckel, J. Organomet. Chem., 1993, 463, 37.
6 S. Schulz, L. Häming, R. Herbst-Imer, H. W. Roesky and G. M.
Sheldrick, Angew. Chem., Int. Ed. Engl., 1994, 33, 969.
7 P. Jutzi, B. Neumann, G. Reumann and H.-G. Stammler, Organome-
tallics, 1999, 18, 2037.
8 A. Haaland, in Coordination Chemistry of Aluminum, ed. G. H.
Robinson, VCH, New York, 1993.
9 M. Stender, B. E. Eichler, N. J. Hardman, P. P. Power, P. Prüst, M.
Noltemeyer and H. W. Roesky, Inorg. Chem., in press.
10 K. M. Waggoner, M. M. Olmstead and P. P. Power, Polyhedron, 1990,
9, 257.
11 A. H. Cowley, F. P. Gabbaï, F. Olbrich, S. Corbelin and R. J. Lagow,
J. Organomet. Chem., 1995, 487, C5.
12 C. J. Carmalt, A. H. Cowley, R. D. Culp and R. A. Jones, Chem.
Commun., 1996, 1453.
13 R. J. Wehmschulte and P. P. Power, Inorg. Chem., 1998, 37, 2106.
14 J. Pfeiffer, W. Maringgelle, M. Noltemeyer and A. Meller, Chem. Ber.,
1989, 122, 245.
Notes and references
† All manipulations were carried out under anaerobic and anhydrous
conditions. A toluene solution (50 mL) of N3SiMe3 (0.38 mL, 2.9 mmol)
was added dropwise to a rapidly stirred solution of {HC(MeCNDipp)2}Ga:
(0.66 g, 1.41 mmol) in toluene (20 mL), with cooling in an ice-bath. The
solution was allowed to rise to room temperature and was then heated to ca.
75 °C for 1 h. The solution was concentrated to ca. 20 mL and cooled for
24 h in a ca. 4 °C refrigerator to afford colorless crystals of the product 1
(0.18 g, 19%). Anal. Calc. (found) for C35H59N6GaSi2: C, 60.94 (61.11), H,
8.62 (8.81), N, 12.25 (12.01)%. Mp 217–220 °C. 1H NMR (300 MHz,
C6D6) d 7.06–7.04 (m, 6H, aromatic H of Ar group), 4.89 (s, 1H, methine
CH), 3.30 (sept, 3JHH = 6.6 Hz, 2H, CHMe), 3.20 (sept, 3JHH 6.6 Hz, 2H,
CHMe), 1.50 (s, 6H, CMe), 1.32 (d, 3JHH 6.6 Hz, 6H, CHMe2), 1.14 (d, 3JHH
6.6 Hz, 6H, CHMe2), 1.08 (d, 3JHH 6.6 Hz, 6H, CHMe2), 1.06 (d, 3JHH 6.6
Hz, 6H, CHMe2), 0.54–0.12 [s, 9H, Si(CH3)3]: 13C{1H} (75 MHz, C6D6) d
172.81 (CN), 145.48 (CMe) 142.76, 140.50 (o-C on C6H3), 127.54 (p-C on
Chem. Commun., 2001, 1184–1185
1185