LETTER
A Purely Synthetic, Diversity Amenable Version of Norephedrine Thiols
1157
(9) a) Trentmann, W.; Mehler, T.; Martens, J. Tetrahedron:
The influence on catalytic activity of the steric effects cre-
ated by the primary hydroxyl-protecting group in 3 is cur-
rently being investigated in our laboratories, and full data
on the structural effects of aminothiols on their catalytic
behavior will be reported soon.
Asymmetry 1997, 8, 2033. b) Kossenjans, M.; Martens, J.
Tetrahedron: Asymmetry 1998, 9, 1409. c) Juanes, O.;
Rodríguez-Ubis, J. C.; Brunet, E.; Pennemann, H.;
Kossenjans, M.; Martens, J. Eur. J. Org. Chem. 1999, 3323.
(10) a) Soai, K.; Yamanoi, T.; Omada, H. Chem. Lett. 1984, 251.
b) Xingshu, L.; Rugang, X. Tetrahedron: Asymmetry 1996, 7,
2779. c) Xingshu, L.; Rugang, X. Tetrahedron: Asymmetry
1997, 8, 2283.
Acknowledgement
(11) a) Brunner, H.; Becker, R.; Riepl, G. Organometallics 1984,
3, 1354. b) Griffin, J. H.; Kellogg, R. J. Org. Chem. 1985, 50,
3261.
(12) Jimeno, C.; Moyano, A.; Pericàs, M. A.; Riera, A. Manuscript
in preparation.
This research was supported by MEC (grant PB98-1246) and DUR-
SI (grant 2000SGR00019). CJ thanks Generalitat de Catalunya for
a pre-doctoral fellowship.
References and Notes
(13) Anderson, S. R.; Ayers, J. T.; De Vries, K. M.; Ito, F.;
Mendenhall, D.; Vanderplas, B. C. Tetrahedron: Asymmetry
1999, 10, 2655; and references cited therein.
(1) a) Asymmetric Catalysis in Organic Synthesis. Noyori, R.
(Ed.); John Wiley & Sons, New York 1994. b) Catalytic
Asymmetric Synthesis. Ojima, I. (Ed.); VCH, New York 1993.
(2) Berrisford, D. J.; Bolm, C.; Sharpless, K. B. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 1050.
(3) For compilations of natural and non-natural enantioselective
catalysts and auxiliaries, see, for example: a) Blaser, H. U.
Chem. Rev. 1992, 92, 935. b) Chiral Auxiliaries and Ligands
in Asymmetric Synthesis. Seyden-Penne, J. (Ed.); John Wiley
& Sons, New York 1995.
(4) a) Vidal-Ferran, A.; Moyano, A.; Pericàs, M. A.; Riera, A. J.
Org. Chem. 1997, 62, 4970. b) Vidal-Ferran, A.; Moyano, A.;
Pericàs, M. A.; Riera, A. Tetrahedron Lett. 1997, 38, 8773.
c) Solà, L.; Reddy, K. S.; Vidal-Ferran, A.; Moyano, A.;
Pericàs, M. A.; Riera, A.; Álvarez-Larena, A.; Piniella, J. F. J.
Org. Chem. 1998, 63, 7078. d) Reddy, K. S.; Solà, L.;
Moyano, A.; Pericàs, M. A.; Riera, A. J. Org. Chem. 1999, 64,
3969. e) Reddy, K. S.; Solà, L.; Moyano, A.; Pericàs, M. A.;
Riera, A. Synthesis 2000, 165.
(5) For applications of aminoalcohols in catalysis, see: Fache, F;
Schulz, E.; Tommasino, M. L.; Lemaire, M. Chem. Rev. 2000,
100, 2159.
(6) a) Katsuki, T.; Martín, V. S. Org. React. 1996, 48, 1.
b) Johnson, R. A.; Sharpless, K. B. in Catalytic Asymmetric
Synthesis; Ojima, I (Ed.); VCH Publishers, New York 1993,
pp 101-158. c) Jacobsen, E. N. in Catalytic Asymmetric
Synthesis; Ojima, I (Ed.); VCH Publishers, New York 1993,
pp 159-202.
(7) a) Kang, J.; Lee, J. W.; Kim, J. I. J. Chem. Soc., Chem.
Commun. 1994, 2009. b) Hof, R.P.; Poelert, M. A.; Peper, N.
C. M. W.; Kellogg, R. M. Tetrahedron: Asymmetry 1994, 5,
31. c) Kossenjans, M.; Soeberdt, M.; Wallbaum, S.; Harms,
K.; Martens, J.; Aurich, H. G. J. Chem. Soc. Perkin Trans. 1
1999, 2353.
(8) Jin, M-J.; Ahn, S-J.; Lee, K-S. Tetrahedron Lett. 1996, 48,
8767. For related ligands obtained from natural amino acids,
see: Fulton, D. A.; Gibson, C. L. Tetrahedron Lett. 1997, 38,
2019.
(14) A solution of 4 (0.817 g, 1.71 mmol) in CH2Cl2 (3 mL) under
N2 at 0 °C was treated with Et3N (0.788 mL, 5.64 mmol) and
MsCl (0.219 mL, 2.82 mmol). After 2 hours, 10% aq AcSK (5
mL, 6.57 mmol) was added, the mixture was allowed to warm
up to r.t., and stirring was continued for 24 h. Water and
CH2Cl2 (10 mL each) were added, the organic phase was
separated, and the aqueous one extracted with CH2Cl2 (2 10
mL). The combined organic extracts were dried (Na2SO4) and
the solvent evaporated to afford pure 8a (0.880 g, 96% yield)
as an amorphous solid. Next, to a solution of 8a (0.400 g,
0.750 mmol) in anhydrous Et2O (5 mL) under N2, DIBALH
(1.6 mL, 1M in hexanes) was added dropwise at 78 °C.
Stirring was continued for 6 hours, while the temperature
slowly increased to 20 °C. Methanol (5 mL) was carefully
added at 78 °C, the reaction mixture was allowed to warm up
to room temperature, and the solvents evaporated. The residue
was purified by column chromatography on silica gel
(hexanes / AcOEt 95:5) to afford 3a (0.252 g, 68% yield) as
an amorphous solid. Data for 3a: [ ]D22 = -48.8 (c 1.18,
CHCl3); 1H NMR (300 MHz, CDCl3) = 1.24 (m, 6H), 2.32
(m, 4H), 3.08 (m, 1H), 3.35 (m, 2H), 4.21 (d, J = 7Hz, 1H),
7.12-7.50 (m, 20H); 13C NMR (75 MHz, CDCl3) = 24.6,
26.6, 44.3, 51.7, 61.1, 70.6, 87.1, 125.6, 126.9, 127.6, 127.7,
127.8, 128.7, 142.6, 143.9; HRMS (CI, NH3): Calcd for
C33H36NOS: 494.2518; Found: 494.2505.
(15) Typical experimental procedure: 10 mg (0.02 mmol) of 3a
was dissolved in 1 mL of anhydrous toluene, under nitrogen
atmosphere. A 1 M diethylzinc solution in hexanes (0.8 mL,
0.80 mmol) was added dropwise, and, after cooling the
mixture at 0 °C, benzaldehyde (42 mg, 0.40 mmol) was added
via syringe. Five hours later, the reaction was quenched with
sat. aq. NH4Cl, extracted with CH2Cl2 (3 10 mL) and the
combined organic phases dried over Na2SO4. After filtration,
the organic solution was analyzed by GC ( -DEXTM 120):
Conversion was found to be 98%, selectivity was higher than
99%, and ee was 99%.
Article Identifier:
1437-2096,E;2001,0,07,1155,1157,ftx,en;G05301ST.pdf
Synlett 2001, No. 7, 1155–1157 ISSN 0936-5214 © Thieme Stuttgart · New York