Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C8CC04048F
COMMUNICATION
Journal Name
R. Katoh, H. Sugihara, Y. Dan-oh, C. Kasada, A. Shinpo and S.
Suga, J. Phys. Chem. B 2005, 109, 15476-15482.
12 S.-M. Yang, C.-Y. Wang, C.-K. Lin, P. Karanam and G. M.
Reddy, Angew. Chem. Int. Ed. 2018, 57, 1668-1672 and ref.
cited therein.
13 M. Ozkütük, E. Ipek, B. Aydıner, S. Mamas and Z. Seferoglu,
J.Mol. Struct. 2016, 108, 521-532.
14 Coumarin 9 is available from TCI, D5007. Price: 1g 78.00 EUR.
useful for extending the application of these dyes to new
photocatalytic transformations.
Acknowledgements
P. C. and M. M. acknowledge the European Commission ERC Starting Grant
(PhotoSi, 278912). A. G, L. M, and P. G. C. are grateful to Fondazione Del Monte,
Farb funds University of Bologna (project SLAMM to A.G.) and EU-Foundation
through the TEC FP7 ICT-Molarnet project (318516) for the partial financial support
of this research.
15 For reductive coupling by the use of perylene as
a
photoredox catalyst, see: S. Okamoto, K. Kojiyama, H.
Tsujioka and A. Sudo, Chem. Comm. 2016, 52, 11339-11342.
16 a) M. Nakajima, E. Fava, S. Loescher, Z. Jiang and M. Rueping,
Angew. Chem. Int. Ed. 2015, 54, 8828-8832; b) E. Fava, A.
Millet, M. Nakajima, S. Loescher and M. Rueping, Angew.
Chem. Int. Ed. 2016, 55, 6776-6779; c) L. Lin, X. Bai, X. Ye, X.
Notes and references
1
For selected recent reviews on photoredox catalysis, see: a)
K. L. Skubi, T. R. Blum. and T. P. Yoon, Chem. Rev. 2016, 116
,
10035-10074; b) X. Lang, J. Zhao and X.-d. Chen, Chem. Soc.
Rev. 2016, 45, 3026-3038; c) M. Parasram and V. Gevorgyan,
Chem. Soc. Rev. 2017, 46, 6227-6240; d) K. N. Lee and M.-Y.
Ngai, Chem. Commun. 2017, 53, 13093-13112; e) Y. – Q. Zou,
F. M. Hoermann and T. Bach, Chem. Soc. Rev. 2018, 47, 278-
290; f) J.-R. Chen, X.-Q. Hu, L.-Q. Lu and W.-J. Xiao, Acc.
Chem. Res. 2106, 49, 1911-1923; g) D. Ravelli, M. Fagnoni
and A. Albini, Chem. Soc. Rev. 2013, 42, 97-113.
Zhao, C.-H. Tan, Z. Jiang, Angew. Chem. Int. Ed. 2017, 56
,
13842–13846; d) C.-Ming Wang, P.-J. Xia, J.-A. Xiao, J. Li, H.-
Y. Xiang, X.-Q. Chen, J. Org. Chem. 2017, 82, 3895–3900; e) L.
J. Rono, H. G. Yayla, Y. Wang, M. F. Armstrong, R. R. Knowles,
J. Am. Chem. Soc. 2013, 135, 17735−17738; f) M. Zhang, W.
D. Rouch, R. D. McCulla, Eur. J. Org. Chem. 2012, 6187–6196;
g) J. Cao, G. Wang, L. Gao, X. Cheng, S. Li, Chem. Sci. 2018, 9,
3664-3671.
2
3
a) S. P. Pitre, C. D. McTiernan and J. C. Scaiano, ACS Omega
2016, 1, 66−76; b) S. P. Pitre, C. D. McTiernan and J. C.
Scaiano, Acc. Chem. Res. 2016, 49, 1320−1330.
a) D. A. Nicewicz and T. M. Nguyen, ACS Catal. 2014, 4,
17 For electrochemical potential of organic molecule, see: H. G.
,
Roth, N. A. Romero and D. A. Nicewicz, Synlett 2016, 27
714–723.
18 Coumarin 8 was prepared in 82% yield following the
355−360; b) N. A. Romero and D. A. Nicewicz, Chem. Rev.
2016, 116, 10075−10166.
literature; see: F. Jafarpour, S. Zarei, M. Barzegar Amiri Olia,
N. Jalalimanesh and S. Rahiminejadan, J. Org. Chem. 2013,
78, 2957-2964.
4
5
M. H. Shaw, J. Twilton and D. W. C. MacMillan, J. Org. Chem.
2016, 81, 6898–6926.
a) A. Gualandi, M. Marchini, L. Mengozzi, M. Natali, M.
19 From a photophysical point of view, coumarins 8, 9 and 10
are quite similar: a small decrease in energy of the S0-S1
electronic transition and of the redox potential
corresponding to the first oxidation is observed for
Lucarini, P. Ceroni and P. G. Cozzi, ACS Catal. 2015, 5, 5927–
5931; b) R. F. Higgins, S. M. Fatur, S. G. Shepard, S. M.
Stevenson, D. J. Boston, E. M. Ferreira, N. H. Damrauer, A. K.
Rappé and M. P. Shores, J. Am. Chem. Soc. 2016, 138, 5451-
5464; For a review: c) C. B. Larsen and O. S. Wenger, Chem.
Eur. J. 2018, 24, 2039-2058.
coumarins
voltammetry analysis (SI) shows a greater stability of the
oxidized species of 10 compared to that of , a property that
9 and 10 compared to 8. Moreover, the cyclic
9
could be responsible for the better efficiency of the catalyst.
20 J. Chin, F. Mancin, N. Thavarajah, D. Lee, A. Lough, D. S.
Chung; J. Am. Chem. Soc. 2003, 125, 15276-15277.
21 The Stern-Volmer analysis was conducted varying the
concentration of selected aldehyde (see SI), in the presence
of tertiary amine, similarly to the reaction conditions, as the
amine is not able to quench the excited state of the
coumarin catalyst.
6
7
C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev.
2013, 113, 5322-5363.
a) K. A. Margrey and D. A. Nicewicz, Acc. Chem. Res. 2016,
49, 1997–2006; For the properties of Fukuzumi’s catalysts,
see: S. Fukuzumi, K. Ohkubo and T. Suenobu, Acc. Chem. Res.
2014, 47, 1455–1464.
8
9
J. A. Murphy, J. Org. Chem. 2014, 79, 3731–3746.
a) E. H. Discekici, N. J. Treat, S. O. Poelma, K. M. Mattson, Z.
M. Hudson, Y. Luo, C. J. Hawker and J. R. de Alaniz, Chem.
Comm. 2015, 51, 11705–11708; b) G. M. Miyake and J. C.
Theriot, Macromolecules 2014, 47, 8255-8261; c) Y. Du, R. M.
Pearson, C.-H. Lim, S. M. Sartor, M. D. Ryan, H. Yang, N. H.
Damrauer and G. M. Miyake, Chem. Eur. J. 2017, 23, 10962–
10968; d) J. C. Theriot, C.-H. Lim, H. Yang, M. D. Ryan, C. B.
Musgrave and G. M. Miyake, Science 2016, 352, 1082–1086.
For single electron donors produced by different mechanistic
pathways, see the work of König: J. I. Bardagi, I. Ghosh, M.
Schmalzbauer, T. Ghosh and B. König, Eur. J. Org. Chem.
2018, 34-40, and ref. therein.
22 The S1 fluorescent excited states of coumarins
9 and 10
(Table 1) lye at lower energy than the T1 excited states of
the investigated aldehydes, see: a) H. Gorner and H. J. Kuhn,
J. Phys. Chem. 1986, 90, 5946-5955; b) M. J. van derBurgt, J.
Jansen, A. H. Huizer and C. A.G.O. Varma, J. Mol. Struct.
1996, 385, 175-183.
23 E. M. Arnett and C. A. Palmer, J. Am. Chem. Soc. 1990, 112
1354-1360.
,
24 a) G. Magagnano, A. Gualandi, M. Marchini, L. Mengozzi, P.
Ceron and P. G. Cozzi, Chem. Commun. 2017, 53, 1591-1594;
b) E. Arceo, E. Montroni and P. Melchiorre, Angew. Chem.
Int. Ed. 2015, 52, 12064–12068.
25 a) J. D.Nguyen, J. W. Tucker, M. D. Konieczynska and C. R. J.
Stephenson, J. Am. Chem. Soc. 2011, 133, 4160–4163; b) C.-J.
Wallentin, J. D. Nguyen, P. Finkbeiner, and C. R. J.
Stephenson, J. Am. Chem. Soc. 2012, 134, 8875–8884.
26 Y. Yasu, T. Koike and M. Akita, Angew. Chem. Int. Ed. 2012,
51, 9567.
27 D. Nicewicz and D. W. C. MacMillan, Science 2008, 322, 77-
80.
28 A. E. Allen and D. W. C. MacMillan, Chem. Sci. 2012, 3, 633-
658.
29 H. S. Li and Y. Q. Li, Chin. Chem. Lett. 2010, 21, 931–934.
10 Quite recently, a number of phenoxazine derivatives have
been developed as visible light-absorbing, organic
photoredox catalysts (PCs) with high reduction potentials
(-1.42 V up to -2.01 vs SCE); see: B. McCarthy, R. Pearson, C.-
H. Lim, S. M. Sartor, N. H. Damrauer and G. M. Miyake, J. Am.
Chem. Soc. 2018, 140, 5088-5101.
11 a) H. Li, L. Cai, J. Li, Y. Hu, P. Zhou and J. Zhang, Dyes and
Pigments, 2011, 91, 309-316; b) B. B. Raju and T. S.
Varadarajan; Laser Chem. 1995, 16, 109–120; c) M. Fujiwara,
N. Ishida, M. Satsuki and S. Suga, J Photopolym. Sci. Technol.
2002, 15, 237–238; d) K. Hara, Z.-S. Wang, T. Sato, A. Furube,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins