W.-M. Dai et al. / Tetrahedron Letters 42 (2001) 5275–5278
Table 2. Synthesis of 2-alkynylanilides 7a and indoles 3 (R1=H)
5277
Entry
X and Y;b R2
t (h), 7 (%)
3 (%)
Entry
X and Y;b R2
t (h), 7 (%)
3 (%)
1
2
3
4
5
a: H, H; Ph
24, 91
22, 96
2, 97c
24, 71c
10, 95
81
81
84
78
81
6
7
8
9
f: H, 6-Cl; Ph
g: H, 6-SO2Et; Ph
h: H, H; SiMe3
i: H, H; n-Pr
6, 94
3, 92
3, 94
3, 98
81
76
b: H, 5-Me; Ph
c: H, 6-Me; Ph
d: 4,6-Me2; Ph
e: 5,6-(CH2)4; Ph
93 (R2=H)
86
a Carried out with 10 mol% Pd(PPh3)4, 30 mol% CuI, and 150 mol% n-Bu4NI in Et3N–CH3CN (1:5) at 20°C under N2.
b Indole skeleton numbering was used here.
c The cross-coupling reactions were carried out at refluxing temperature. 7c was obtained in 67% yield at 20°C for 24 h.
tions proceeded on heating (entries 3 and 4). In con-
trast, electron-deficient substituents activated the tri-
flates so that the reaction times decreased from 24 h for
6a to 3–6 h for 6f,g at 20°C (entries 6 and 7). Cycliza-
tion of 7 occurred upon exposure to t-BuOK (1.2
equiv.)6e–g in 1-methyl-2-pyrrolidinone (NMP) at 60°C
to provide indoles 3 where the 1-acyl group was
removed presumably after the indole ring forma-
tion.6b,d,e We found that both N-benzoyl6b and benzyl-
oxyacetyl analogs of 7a gave the same indole 3a under
the basic conditions. The SiMe3 group in 7h was lost
during the indole ring closure to give 3h.6b,e,f Moreover,
TMG could be used to replace t-BuOK for indole ring
closure.8
3. Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chem-
istry; Pergamon: Amsterdam, 2000.
4. The Sonogashira cross-coupling reaction, see: (a) Sono-
gashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett.
1975, 4467; (b) Sonogashira, K. In Comprehensive
Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Perga-
mon Press: New York, 1991; Vol. 3, pp. 521–549; (c)
Rossi, R.; Carpita, A.; Bellina, F. Org. Prep. Proc. Int.
1995, 27, 129. A recent example of intramolecular Sono-
gashira cross-coupling reaction, see: (d) Dai, W.-M.; Wu,
A. Tetrahedron Lett. 2001, 42, 81.
5. For Pd(II)-catalyzed cyclization of 2-alkynylanilines, see:
(a) Utimoto, K.; Miwa, H.; Nozaki, H. Tetrahedron Lett.
1981, 22, 4277; (b) Taylor, E. C.; Katz, A. H.; Salgado-
Zamore, H.; McKillop, A. Tetrahedron Lett. 1985, 26,
5963; (c) Krolski, M. E.; Renaldo, A. F.; Rudisill, D. E.;
Stille, J. K. J. Org. Chem. 1988, 53, 1170; (d) Iritani, K.;
Matsubara, S.; Utimoto, K. Tetrahedron Lett. 1988, 29,
1799; (e) Arcadi, A.; Cacchi, S.; Marinelli, F. Tetrahedron
Lett. 1989, 30, 2581; (f) Rudisill, D.; Stille, J. K. J. Org.
Chem. 1989, 54, 5856; (g) Jeschke, T.; Wensbo, D.;
Annby, U.; Gronowitz, S.; Cohen, L. Tetrahedron Lett.
1993, 34, 6471; (h) Kondo, Y.; Shiga, N.; Murata, N.;
Sakamoto, T.; Yamanaka, H. Tetrahedron 1994, 50,
11803; (i) Samizu, K.; Ogasawara, K. Heterocycles 1995,
41, 1627; (j) Yu, M. S.; de Leon, L. L.; McGuire, M. A.;
Botha, G. Tetrahedron Lett. 1998, 39, 9347. For Cu(I)-
catalyzed cyclization of 2-alkynylanilines, see: (k) Castro,
C. E.; Stephens, R. D. J. Org. Chem. 1963, 28, 2163; (l)
Castro, C. E.; Gauhan, E. J.; Owsley, D. C. J. Org.
Chem. 1966, 31, 4071; (m) Villemin, D.; Goussu, D.
Heterocycles 1989, 29, 1255; (n) Kumar, V.; Dority, A.
A.; Bacon, E. R.; Singh, B.; Lesher, G. Y. J. Org. Chem.
1992, 57, 6995; (o) Katritzky, A. R.; Li, J.; Stevens, C. V.
J. Org. Chem. 1995, 60, 3401; (p) Ezquerra, J.; Pedregal,
C.; Lamas, C.; Barluenga, J.; Pe´rez, M.; Garc´ıa-Mart´ın,
M. A.; Gonza´lez, J. M. J. Org. Chem. 1996, 61, 5804; (q)
Soloducho, J. Tetrahedron Lett. 1999, 40, 2429. For
Pd(0)–Cu(I)-catalyzed cyclization of 2-alkynylanilines,
see: (r) Sakamoto, T.; Kondo, Y.; Iwashita, S.; Nagano,
T.; Yamanaka, H. Chem. Pharm. Bull. 1988, 36, 1305; (s)
Xu, L.; Lewis, I. R.; Davidsen, S. K.; Summers, J. B.
Tetrahedron Lett. 1998, 39, 5159. Synthesis on solid sup-
ports, see: (t) Zhang, H.-C.; Brumfield, K. K.; Jaroskova,
L.; Maryanoff, B. E. Tetrahedron Lett. 1998, 39, 4449; (u)
Zhang, H.-C.; Ye, H.; Moretto, A. F.; Brumfield, K. K.;
Maryanoff, B. E. Org. Lett. 2000, 2, 89.
In summary, we have successfully developed a novel
and general synthesis of substituted indoles from 2-
aminophenols. This approach enables indole compound
library synthesis by taking advantage of the structural
diversity of commercially available 2-aminophenols. A
remarkable rate enhancement was observed for the
Sonogashira cross-coupling reactions of 2-carboxamido-
aryl triflates 6 in the presence of iodide anion. This
finding is useful for understanding the reaction mecha-
nisms of the related cross-coupling reactions of signifi-
cance in contemporary organic synthesis. Transfer of
our indole synthesis from solution to solid supports is
underway in our laboratory.
Acknowledgements
This work is supported by the Innovation and Technol-
ogy Fund (ITS/119/00) from the Innovation and Tech-
nology Commission of the Hong Kong Special
Administration Region, China. We also thank HKUST
for providing a Post Doctoral Fellowship Matching
Fund (PDF99/00) to D.-S. Guo and Department of
Chemistry, HKUST for providing a scholarship to
L.-P. Sun.
References
1. Metal-Catalyzed Cross-Coupling Reactions; Diederich,
F.; Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998.
2. Tsuji, J. Palladium Reagents and Catalysts; John Wiley &
Sons: Chichester, 1995.
6. Alkoxide-catalyzed cyclization of 2-alkynylanilines, see:
(a) Sakamoto, T.; Kondo, Y.; Yamanaka, H. Hetero-
cycles 1986, 24, 31; (b) Sakamoto, T.; Kondo, Y.; Iwashita,