S. J. Rowland, Org. Geochem., 1997, 27, 497; E. J. Wraige, L.
Johns, S. T. Belt, G. Masse, J.-M. Robert and S. J. Rowland,
Phytochemistry, 1998, 51, 69; E. J. Wraige, S. T. Belt, G. Masse,
J.-M. Robert and S. J. Rowland, Org. Geochem., 1998, 28, 855;
J. S. S. Damste, W. I. C. Rijpstra, S. Schouten, H. Peletier, M. J.
E. van der Maarel and W. W. C. Gieskes, Org. Geochem., 1999,
30, 95; L. Johns, E. J. Wraige, S. T. Belt, C. A Lewis, G. Masse, J.
M. Robert and S. J. Rowland, Org. Geochem., 1999, 30, 1471; J. S.
S. Damste, S. Schouten, W. C. Rijpstra, E. C. Hopmans, H. Pele-
tier, W. W. C. Gieskes and J. A. J. Geenevasen, Org. Geochem.,
1999, 30, 1581; S. T. Belt, G. Allard, G. Masse, J.-M. Robert and
S. Rowland, Chem. Commun., 2000, 501; S. J. Rowland, D. A.
Yon, C. A. Lewis and J. R. Maxwell, Org. Geochem., 1985, 8, 207;
C. Porte, D. Barcelo, T. M. Tavares, V. C. Rocha and J. Albaiges,
Arch. Environ. Contam. T oxicol., 1990, 19, 263; S. J. Rowland,
S. T. Belt, E. J. Wraige, G. Masse, C. Roussakis and J.-M. Robert,
Phytochemistry, 2001, 56, 597.
For highly branched polyprenols and related alcohols isolated
from higher plants, see: E. Lemmich, Phytochemistry, 1979, 18,
1195; H. Nagano, M. Tori, M. Shiota and J. de Pascual Teresa,
Bull. Chem. Soc. Jpn., 1984, 57, 2971; M. Bruno, L. Lamartina, F.
Lentini, C. Pascual and G. Savona, T etrahedron L ett., 1984, 25,
4287; L. Mangoni, D. Merola, P. Monaco, M. Parrilli and L.
Previtera, T etrahedron L ett., 1984, 25, 2597; C. Porte, D. Barcelo,
T. M. Tavares, V. C. Rocha and J. Albaiges, Arch. Environ.
Contam. T oxicol., 1990, 19, 263; J.-L. Giner, J. D. Berkowitz and
T. Andersson, J. Nat. Prod., 2000, 63, 267; S. Faure, J. D. Con-
nolly, C. O. Fakunle and O. Piva, T etrahedron, 2000, 56, 9647;
H. R. Nawaz, A. Malik and M. S. Ali, Phytochemistry, 2001, 56,
99.
mation of 6-polyprenyl-substituted polyprenyl phosphates 12,
14 and 16 in the bu†ers with a wide range of pH may partly
be attributed to the rigid structure.
These results from T measurements show that the poly-
1
prenols 56 and 59 are more mobile in solution than their satu-
rated counterparts such as phytol.23c,26 The fact that the
vesicles from unsaturated polyprenyl phosphates are less
stable than those from their saturated counterparts can be
interpreted based on the di†erence in the rigidity of the hydro-
phobic chains. To estimate experimentally the degree of con-
tribution of the intramolecular attractive interaction to vesicle
stabilization, we would require further systematic investiga-
tion on the spinÈlattice relaxation times T employing solu-
1
tions of polyprenols and their phosphates with various chain
lengths in polar and non-polar solvents.
7
Conclusion
The spontaneous vesicle formation of polyprenylated poly-
prenyl phosphates 6È20 and the structural properties of these
amphiphiles and the corresponding alcohols have been report-
ed. We now include these amphiphiles 6È19 as possible primi-
tive biomembrane constituents to the hypothetical family tree
of the chemical evolution of terpenoids as biomembrane con-
stituents and reinforcers.1b
8
9
For highly branched polyprenyl acetate isolated from higher
plants, see: M. J. Gieselmann, D. S. Moreno, J. Fargerlund, H.
Tashiro and W. L. Roelofs, J. Chem. Ecol., 1979, 5, 27.
(a) H. Nagano and K. Kudo, Bull. Chem. Soc. Jpn., 1996, 69,
2071; (b) H. Nagano, T. Nagasawa and M. Sakuma, Bull. Chem.
Soc. Jpn., 1997, 70, 1969; (c) H. Nagano, E. Nakanishi, S. Takajo,
M. Sakuma and K. Kudo, T etrahedron, 1999, 55, 2591.
Acknowledgements
We are grateful for support granted by CNRS to S. G.,
Association ““Amis des SciencesÏÏ to O. D. We thank Mr N.
Midani for his technical assistance, Dr M. Tsuji, Nisshin
Flour Milling, Dr T. Takigawa, Kuraray and Professor T.
Eguchi, Tokyo Institute of Technology for their generous gifts
of polyprenols.
10 H. Goto and E. Osawa, J. Am. Chem. Soc., 1989, 111, 8950; H.
Goto and E. Osawa, J. Chem. Soc., Perkin T rans. 2, 1993, 187;
JCPE, P040 and P021, OCPE, no. 59, developed by H. Goto and
E. Osawa.
11 J. N. Israelachvili, Intermolecular and Surface Forces, Academic
Press, London, 1994, pp. 380È382; J. N. Israelachvili, S. Marcelja
and R. G. Horn, Q. Rev. Biophys., 1989, 13, 121; P. R. Cullis and
B. De Kruij†, Biochim. Biophys. Acta, 1979, 559, 99.
12 A. Milon, T. Lazrak, A.-M. Albrecht, G. Wol†, G. Weill, G.
Ourisson and Y. Nakatani, Biochim. Biophys. Acta, 1986, 859, 1.
13 Y. Nagawa and S. L. Regen, J. Am. Chem. Soc., 1992, 114, 1668.
14 M. J. S. Dewar and M. C. Kohn, J. Am. Chem. Soc., 1972, 94,
2699; E. L. Eliel and S. H. Wilen, Stereochemistry of Organic
Compounds, John Wiley & Sons, Inc., New York, 1994, p. 615.
15 J. M. Goodman, J. Chem. Inf. Comput. Sci., 1997, 37, 876.
16 J. L. Broeker, R. W. Ho†mann and K. N. Houk, J. Am. Chem.
Soc., 1991, 113, 5006; N. J. Murgolo, A. Patel, S. S. Stivala and
T. K. Wong, Biochemistry, 1989, 28, 253.
References and notes
1
For reviews, see: (a) G. Ourisson and Y. Nakatani, Chem. Biol.,
1994, 1, 11; (b) G. Ourisson and Y. Nakatani, C. R. Acad. Sci. Ser.
IIb, 1996, 322, 323; (c) G. Ourisson and Y. Nakatani, T etra-
hedron, 2000, 55, 3183.
(a) N. Plobeck, S. EiÑer, A. Brisson, Y. Nakatani and G. Ouriss-
on, T etrahedron L ett., 1992, 33, 5249; (b) V. Birault, G. Pozzi, N.
Plobeck, S. EiÑer, M. Schmutz, T. Planche, J. Raya, A. Brisson,
Y. Nakatani and G. Ourisson, Chem. Eur. J., 1996, 2, 789; (c) G.
Pozzi, V. Birault, B. Werner, O. Dannenmuller, Y. Nakatani, G.
Ourisson and S. Terakawa, Angew. Chem., Int. Ed. Engl., 1996,
35, 177; (d) O. Dannenmuller, K. Arakawa, T. Eguchi, K. Kakin-
uma, S. Blanc, A.-M. Albrecht, M. Schmutz, Y. Nakatani and G.
Ourisson, Chem. Eur. J., 2000, 6, 645.
2
3
4
5
G. Ourisson and M. Rohmer, Acc. Chem. Res., 1992, 25, 403; (b)
M.-A. Krajewski-Bertrand, A. Milon, Y. Nakatani and G. Ouriss-
on, Biochim. Biophys. Acta, 1992, 1105, 213.
G. Ourisson, Pure Appl. Chem., 1989, 61, 345; M. Keller, D.
Hafenbradl, K. O. Stetter, G. Teller, Y. Nakatani and G. Ouriss-
on, Angew. Chem., Int. Ed. Engl., 1995, 34, 1898.
17 H. Goto and E. Osawa, J. Am. Chem. Soc., 1989, 111, 8950; H.
Goto and E. Osawa, J. Chem. Soc., Perkin T rans. 2, 1993, 187.
18 B. W. Gung, Z. Zhu and R. A. Fouch, J. Am. Chem. Soc., 1995,
117, 1783; K. B. Wiberg and M. A. Murcko, J. Am. Chem. Soc.,
1988, 110, 8029.
19 E. L. Eliel and S. H. Wilen, Stereochemistry of Organic Com-
pounds, John Wiley & Sons, Inc., New York, 1994, p. 600.
20 B. Lemarie and B. Braillon, J. Magn. Reson., 1979, 35, 343.
21 T. J. Zahn, M. B. Ksebati and R. A. Gibbs, T etrahedron L ett.,
1998, 39, 3991.
22 J. M. Marshall, Carbon-carbon and carbon-proton NMR coup-
lings: Applications to organic stereochemistry and conformational
analysis, Verlag Chemie International, DeerÐeld Beach, FL, USA,
1983, pp. 65È122.
For highly branched isoprenoid alkenes and alkanes isolated
from sediments, see: J. K. Volkman, J. W. Farrington, R. B.
Gagosian and S. G. Wakeham, in Advances in Organic Geochem-
istry 1981, ed. M. Bjoroy, Wiley, Chichester, 1983, pp. 228È240;
J. N. Robson and S. J. Rowland, Nature (L ondon), 1986, 324, 561;
S. J. Hird, R. Evans and S. J. Rowland, Mar. Chem., 1992, 37,
117; S. T. Belt, D. A. Cooke, S. J. Hird and S. Rowland, J. Chem.
Soc., Chem. Commun., 1994, 2077; M. J. L. Hoefs, J. S. S. Damste
and J. W. de Leeuw, Org. Geochem., 1995, 23, 263; Y. Huang, M.
Murray, G. Eglinton and P. Metzger, T etrahedron L ett., 1995, 36,
5973; M. J. Rospondek, J. Koster and J. S. Sinninghe Damste,
Org. Geochem., 1997, 26, 295.
For highly branched isoprenoid alkenes and alkanes isolated
from diatomaceous algae, see: S. J. Rowland and J. N. Robson,
Mar. Environ. Res., 1990, 30, 191; R. E. Summons, R. A. Barrow,
R. J. Capon, J. M. Hope and C. Stranger, Aust. J. Chem., 1993,
46, 907; J. K. Volkman, S. M. Barrett and G. A. Dunstan, Org.
Geochem., 1994, 21, 407; S. T. Belt, D. A. Cooke, J.-M. Robert
and S. Rowland, T etrahedron L ett., 1996, 37, 4755; E. J. Wraige,
S. T. Belt, C. A. Lewis, D. A. Cooke, J. M. Robert, G. Masse and
23 (a) R. A. Goodman, E. OldÐeld and A. Allerhand, J. Am. Chem.
Soc., 1973, 95, 7553; (b) L. Pogliani, M. Ceruti, G. Ricchiardi and
D. Viterbo, Chem. Phys. L ipids, 1994, 70, 21; (c) J. M. Brown and
D. R. M. Martens, T etrahedron, 1977, 33, 931.
6
24 P. A. Couperus, A. D. H. Clague and J. P. C. M. van Dongen,
Org. Magn. Reson., 1976, 8, 426.
25 E. Breitmaier, K.-H. Spohn and S. Berger, Angew. Chem., Int. Ed.
Engl., 1975, 14, 144.
26 The T values of the terminal trans-methyls, which are near the
1
axis, were smaller than those of the corresponding terminal cis-
methyls. A. Okubo, H. Kawai, T. Matsunaga, T. Chuman, S.
Yamazaki and S. Toda, T etrahedron L ett., 1980, 21, 4095.
New J. Chem., 2001, 25, 917È929
929