Chemistry Letters Vol.32, No.11 (2003)1067
Table 1. Oxidation of sulfides to sulfoxides with 30% H2O2
catalyzed by [PZnMo2W9O39]5ꢁ via Scheme 1
References and Notes
1
This paper dedicated to: Prof. Mohammad Hosein Habibi and
Prof. Shahram Tangestaninejad.
Entry
Sulfide
Time/min
Yield of
Solfoxidea,b/%
2
M. Hudlicky, in ‘‘Oxidation in Organic Chemistry,’’ ACS
Monograph Ser. 186, American Chemical Society, Washing-
ton DC (1990), pp 252–261 and references cited therein.
J. Drabowski, P. Kielbasinski, and M. Mikolajczyk, in
‘‘Synthesis of Sulfoxides,’’ Wiley, New York (1994).
a)G. J. Hollingworth, in ‘‘Comprehensive Organic Function-
al Group Transformations,’’ ed. by A. R. Katritzky, O. Meth-
Cohn, C. W. Rees, and G. Pattenden, Elsevier, Oxford (1995),
Vol. 2, pp 144–156. b)In ‘‘The Synthesis of Sulphones,
Sulphoxides and Cyclic Sulphides,’’ ed. by S. Patai and Z.
Rappoport, Wiley, New York (1994). c) J. March, in
‘‘Advanced Organic Chemistry,’’ 4th ed., Wiley, New York
(1992).
S
1
2
30
20
92
80
3
4
S
CHO
S
S
S
3
4
30
180
150
240
210
30
90
90
87
90
90
92
87
88
85
88
5
S
S
5
a)R. S. Varma, R. K. Saini, and H. M. Meshram, Tetrahedron
Lett., 38, 6525 (1997). b) G. W. Gokel, H. M. Gerdes, and D.
M. Dishong, J. Org. Chem., 45, 3634 (1980). c) B. M. Trost
and D. P. Curran, Tetrahedron Lett., 22, 1287 (1981). d) J. M.
Khurana, A. K. Panda, A. Ray, and A. Gogia, Org. Prep.
Proced., 28, 234 (1996). e) A. Mckillop and J A. Tarbin, Tet-
rahedron Lett., 24, 1505 (1983). f) C. G. Venier, T. G.
Squires, Y.-Y. Chen, G. P. Hussmann, J. C. Shei, and B. F.
Smith, J. Org. Chem., 47, 3773 (1982). g) W. Adam and L.
Hadjiarapoglou, Tetrahedron Lett., 33, 469 (1992). h) G.
W. Berton, J. D. Fields, and P. J. Kropp, Tetrahedron Lett.,
36, 3825 (1995).
6
7
S
8
S
9
30
S
10
11
12
60
S
6
7
8
a)S. M. Bonesi and A. Albini, J. Org. Chem., 65, 4532
(2000). b) D. Madhavan and K. Pitchumani, Tetrahedron,
57, 8391 (2001).
a)M. M. Dell’Anna, P. Mastrorilli, and C. F. Nobile, J. Mol.
Catal., 108, 57 (1996). b) V. Khanna, G. C. Maikap, and J.
Iqbal, Tetrahedron Lett., 37, 3367 (1996).
a)Y. Ishii, H. Tanaka, and Y. Nishiyama, Chem. Lett., 1994,
1. b)K. Sato, M. Hyodo, M. Aoki, X.-Q. Zheng, and R.
Noyori, Tetrahedron, 57, 2469 (2001)and references cited
therein.
60
S
S
60
13
14
30
30
85
87
S
aAll of the products were characterized by comparison of their
physical and spectral data with those of authentic samples.
bYields refer to isolated products.
9
S. Tangestaninejad and B. Yadollahi, Chem. Lett., 1998, 512.
10 a)M. T. Pope, ‘‘Heteropoly and Isopoly Oxometalates,’’
Springer-Verlag, Berlin (1983). b) M. T. Pope and A. Muller,
Angew. Chem., Int. Ed. Engl., 30, 34 (1991). c) C. L. Hill and
C. M. Prosser-McCartha, Coord. Chem. Rev., 143, 407
(1995). d) C. L. Hill, Chem. Rev., 98, 1 (1998). e) I. V.
Kozhevnikov, Chem. Rev., 98, 171 (1998). f) N. Mizuno
and M. Misono, J. Mol. Catal., 64, 1 (1990).
11 S. Yamazaki, Bull. Chem. Soc. Jpn., 69, 2955 (1996).
12 O. Bortolini, F. Di Furia, G. Modena, and R. Seraglia, J. Org.
Chem., 50, 2688 (1985).
13 a)J. M. Fraile, J. I. Garcia, B. Lazaro, and J. A. Mayoral,
Chem. Commun., 1998, 1807. b)D. J. Robinson, L. Davies,
N. McGuire, D. F. Lee, P. McMorn, D. J. Willock, G. W.
Watson, P. C. Bulman Page, D. Bethell, and G. Hutchings,
Phys. Chem. Chem. Phys., 2, 1523 (2000).
14 Typical experimental procedure: To a stirred solution of sul-
fide (1 mmol)in acetonitrile (3 mL)in the presence of
[PZnMo2W9O39]5ꢁ (0.05 mmol), was added at room temper-
ature 1.2 mmol of 30% H2O2. The progress of reaction moni-
tored by TLC. After the time reported in the table, the sulfox-
ide were purified by flash chromatography over silica gel and
fully characterized.
In the case of phenyl methyl sulfide, full oxidation of the
starting material was obtained (yield of sulfoxide 92%). The ox-
idation of benzyl phenyl sulfide results in the formation of ben-
zyl phenyl sulfoxide in 85% yields (Table 1, Entry 11). Allyl
methyl thioether (Table 1, Entry 8)was selected for study a
molecule having two functional groups for oxidation, namely
carbon–carbon double bond and the sulfur atom. However, no
oxidation products of the carbon–carbon double bond were ob-
served with [PZnMo2W9O39]5ꢁ as catalyst. The oxidation of di-
buthyl sulfide occurs to give the sulfoxide in 87% yield. We not-
ed that, as expected, the susceptibility of sulfides to H2O2 is
highly dependent on the substitution.
In conclusion this catalytic system efficiently promotes the
oxidation of aliphatic and aromatic sulfides with 30% hydrogen
peroxide and [PZnMo2W9O39]5ꢁ as catalyst in acetonitrile with
high to excellent yields. This system is a mild, simple, clean, and
cheap method for oxidation of sulfides to sulfoxides.
I am grateful to Institute for Advanced Studies in Basic Sci-
ences (IASBS)for financial support of this work.
Published on the web (Advance View)October 20, 2003; DOI 10.1246/cl.2003.1066