88
S. Shinachi et al. / Journal of Catalysis 233 (2005) 81–89
4. Conclusion
[16] P. Battioni, J.F. Bartoli, P. Leduc, M. Fontecave, D. Mansuy, J. Chem.
Soc., Chem. Commun. (1987) 791.
[17] D.H.R. Barton, R.S. Hay-Motherwell, W.B. Motherwell, Tetrahedron
Lett. 24 (1983) 1979.
[18] N. Komiya, T. Naota, Y. Oda, S.-I. Murahashi, J. Mol. Catal. A: Chem.
117 (1997) 21.
[19] S.-I. Murahashi, T. Naota, N. Komiya, Tetrahedron Lett. (1995) 8059.
[20] R. Giannandrea, P. Mastrorilli, C.F. Nobile, G.P. Suranna, J. Mol.
Catal. 94 (1994) 27.
[21] S.-I. Murahashi, Y. Oda, T. Naota, J. Am. Chem. Soc. 114 (1992) 7913.
[22] K. Yamaguchi, N. Mizuno, New. J. Chem. 26 (2002) 972.
[23] R. Neumann, M. Dahan, J. Am. Chem. Soc. 120 (1998) 11969.
[24] N. Mizuno, M. Tateishi, T. Hirose, M. Iwamoto, Chem. Lett. (1993)
2137.
We could develop an adamantane oxidation system with
vanadium-substituted polyoxometalates and 1 atm of mole-
cular oxygen without any additives such as reductants and
radical initiators. Spectroscopic data show that elimination
of the vanadium from the framework of phosphomolybdate
Keggin anions occurs to form free vanadium species and
3−
PMo12O40 Keggin anions during the reaction. The reac-
tion would be promoted mainly by the vanadium species,
n−
and PMo12O40 enhances the activity. The catalyst gener-
ates adamantyl radicals by the abstraction of one electron
from adamantane.
[25] M.M.T. Khan, D. Chatterjee, S. Kumar, A.P. Rao, N.H. Khan, J. Mol.
Catal. 75 (1992) L49.
[26] I.V. Kozhevnikov, Catalysis by Polyoxometalates, Wiley, Chichester,
England, 2000.
Acknowledgments
[27] R. Neumann, Prog. Inorg. Chem. 47 (1998) 317.
[28] N. Mizuno, M. Misono, Chem. Rev. 98 (1998) 199.
[29] T. Okuhara, N. Mizuno, M. Misono, Adv. Catal. 41 (1996) 113.
[30] C.L. Hill, C.M. Prosser-McCartha, Coord. Chem. Rev. 143 (1995) 407.
[31] M.T. Pope, A. Müller, Angew. Chem. Int. Ed. Engl. 30 (1991) 34.
[32] K. Kamata, K. Yonehara, Y. Sumida, K. Yamaguchi, S. Hikichi, N.
Mizuno, Science 300 (2003) 964.
[33] W. Adam, P.L. Alsters, R. Neumann, C.R. Saha-Möller, D. Sloboda-
Rozner, R. Zhang, J. Org. Chem. 68 (2003) 1721.
[34] D. Sloboda-Rozner, P.L. Alsters, R. Neumann, J. Am. Chem. Soc. 125
(2003) 5280.
This work was supported in part by the Core Research
for Evolutional Science and Technology (CREST) program
of the Japan Science and Technology Agency (JST) and
a Grant-in-Aid for Scientific Research from the Ministry
of Education, Culture, Sports, Science, and Technology of
Japan.
Supplementary material
[35] N.M. Okun, T.M. Anderson, C.L. Hill, J. Am. Chem. Soc. 125 (2003)
3194.
The online version of this article contains additional sup-
plementary material.
[36] H. Weiner, A. Trovarelli, R.G. Finke, J. Mol. Catal. A 191 (2003) 253.
[37] A.M. Khenkin, R. Neumann, Adv. Synth. Catal. 344 (2002) 1017.
[38] S. Ellis, I.V. Kozhevnikov, J. Mol. Catal. A 187 (2002) 227.
[39] R. Ben-Daniel, L. Weiner, R. Neumann, J. Am. Chem. Soc. 124 (2002)
8788.
[40] H. Tsuji, Y. Koyasu, J. Am. Chem. Soc. 124 (2002) 5608.
[41] J.T. Rhule, W.A. Neiwert, K.I. Hardcastle, B.T. Do, C.L. Hill, J. Am.
Chem. Soc. 123 (2001) 12101.
References
[1] R.A. Sheldon, J.K. Kochi, Metal Catalyzed Oxidation of Organic
Compounds, Academic Press, New York, 1981.
[2] C.L. Hill, in: A.L. Baumstark (Ed.), Advances in Oxygenated
Processes, vol. 3, JAI Press, London, 1998, p. 1.
[3] M. Hudlucky, Oxidations in Organic Chemistry, ACS Monograph Se-
ries, American Chemical Society, Washington, DC, 1990.
[4] X. Wan, M. Duncan, P. Nass, J.W. Harmon, Anticancer Res. 21 (2001)
2657.
[42] I.A. Weinstock, E.M.G. Barbuzzl, M.W. Wemple, J.J. Cowan, R.S.
Reiner, D.M. Sonnen, R.A. Heintz, J.S. Bond, C.L. Hill, Nature 414
(2001) 191.
[43] Y. Nishiyama, Y. Nakagawa, N. Mizuno, Angew. Chem. Int. Ed. 40
(2001) 3639.
[44] T. Hayashi, A. Kishida, N. Mizuno, Chem. Commun. (2000) 381.
[45] T. Yokota, M. Tani, S. Sakaguchi, Y. Ishii, J. Am. Chem. Soc. 125
(2003) 1476.
[5] N. Shida, T. Ushiroguchi, K. Asakawa, T. Okino, S. Saito, Y. Funaki,
A. Takaragi, K. Tsutsumi, K. Inoue, T. Nakao, J. Photopolym. Sci.
Technol. 13 (2000) 601.
[6] N. Matsuzawa, S. Takechi, T. Ohfuji, K. Kuhara, S. Mori, M. Endo,
K. Kamon, T. Morisawa, A. Yamaguchi, M. Sasago, Jpn. J. Appl.
Phys. 37 (1998) 5781.
[46] M. Vennat, P. Herson, J.-M. Brégeault, G.B. Shul’pin, Eur. J. Inorg.
Chem. (2003) 908.
[47] R. Ben-Daniel, R. Neumann, Angew. Chem. Int. Ed. 42 (2003) 92.
[48] T. Yokota, S. Sakaguchi, Y. Ishii, Adv. Syhth. Catal. 344 (2002) 849.
[49] A.M. Khenkin, L. Weiner, Y. Wang, R. Neumann, J. Am. Chem. Soc.
123 (2001) 8531.
[7] H. Stetter, Angew. Chem. 66 (1954) 217.
[50] C.P. Stewart, A.L. Porte, J. Chem. Soc., Dalton Trans. (1972) 1661.
[51] D.D. Perrin, in: W.L.F. Armarego (Ed.), Purification of Laboratory
Chemicals, third ed., Pergamon Press, Oxford, UK, 1988.
[52] G.A. Tsigdinos, C.J. Hallada, Inorg. Chem. 7 (1968) 437.
[53] R. Bayer, C. Marchal, F.X. Liu, A. Tézé, G. Hervé, J. Mol. Catal. A:
Chem. 110 (1996) 65.
[8] H. Stetter, M. Schwarz, A. Hirschhorn, Chem. Ber. 92 (1959) 1629.
[9] H. Stetter, E. Rauscher, Chem. Ber. 93 (1960) 1161.
[10] G.W. Smith, H.D. Williams, J. Org. Chem. 7 (1961) 2207.
[11] Y. Ishii, J. Mol. Catal. A 117 (1997) 123.
[12] Y. Ishii, T. Iwasawa, S. Sakaguchi, K. Nakayama, Y. Nishiyama,
J. Org. Chem. 61 (1996) 4520.
[54] C. Marchal-Roch, N. Laronze, N. Guillou, A. Tézé, G. Hervé, Appl.
Catal. A 199 (2000) 33.
[55] R. Neumann, M. Levin, J. Am. Chem. Soc. 114 (1992) 7278.
[56] L. Pettersson, I. Andersson, A. Selling, J.H. Grate, Inorg. Chem. 33
(1994) 982.
[13] T. Funabiki, H. Ishida, S. Yoshida, Chem. Lett. (1991) 1819.
[14] I. Yamanaka, K. Nakazaki, T. Akimoto, K. Otsuka, J. Chem. Soc.,
Perkin Trans. 2 (1996) 2511.
[15] N. Kitajima, M. Ito, H. Fukui, Y. Moro-oka, J. Chem. Soc., Chem.
Commun. (1991) 102.