J.K.Mukhopadhyaya et al./ Bioorg.Med.Chem.Lett.11 (2001) 1919–1924
1923
Table 1. Pharmacological characterization of N1-substituted analogues of APDC at mGluR2, mGluR3, and mGluR6
Compound
MGluR2 (mMa)
Agonists EC50 Antagonists IC50
mGluR3 (mMa)
Antagonists IC50
mGluR6 (mMa)
Agonists EC50
Agonists EC50
APDC
7a
7b
0.48
0.61b
1.7
na
na
na
22
na
21
51
8
9a
9b
9c
37
6.1
950
37
na
27
na
88b
na
na
7.5b
24
74
9d
9e
9f
9g
9h
9i
9j
9k
9l
9m
9n
9o
MCCGd
MCPGd
110
77
190
77
na
na
na
320
310
na
57
58
110
100
na
210
na
33
na
na
na
6.8
na
na
4.7b
4.0
45
na
93
na
na
na
na
23
160
na
35
2.3b
na
na
na
na
na
na
na
na
45c
62
68
270
290
aValues were calculated by nonlinear regression from data shown in Figures 1–3 (na=not active).
bPartial agonist.
cMaximal inhibition reached only 50%.
dTwo antagonists, a-methyl-2-(carboxycyclopropyl)glycine (MCCG) and a-methyl-4-carboxyphenylglycine (MCPG), were used for comparison.
9. Kozikowski, A. P.; Steensma, D.; Araldi, G. L.; Tuckman-
tel, W.; Wang, S.; Pshenichkin, S.; Surina, E.; Wroblewski,
J. T. J.Med.Chem. 1998, 41, 1641.
10. Tuckmantel, W.; Kozikowski, A. P.; Wang, S.; Pshe-
nichkin, S.; Surina, S.; Wroblewski, J. T. Bioorg.Med.Chem.
Lett. 1997, 7, 601.
11. Kozikowski, A. P.; Araldi, G. L.; Tuckmantel, W.; Pshe-
nichkin, S.; Surina, E.; Wroblewski, J. T. Bioorg.Med.Chem.
Lett. 1999, 9, 1721.
12. Tanaka, K.; Sawanishi, H. Tetrahedron: Asymmetry 1995,
6, 1641.
nitrogen of APDC. Based upon the recently published
X-ray structure of the extracellular ligand-binding
region of mGluR1,18 one may suggest that these sub-
stituents are capable of alteringthe dynamic equilibrium
amongthe various conformational states of the receptor,
so as to favor the open, closed (active), or intermediate
conformational states. Homology-based modeling
methods may allow for a more precise understandingof
these substituent effects.19
13. Representative procedure: To a solution of 3 (170 mg,
0.562 mmol) and 2-nitrobenzyl bromide (134 mg, 0.618 mmol)
in dichloromethane (4 mL) was added N,N-diisopropylethyl-
amine (0.25 mL, 1.41 mmol), and the mixture was stirred under
an argon atmosphere at room temperature for 30 h. The reac-
tion mixture was diluted with dichloromethane (20 mL),
washed with H2O (10 mL), dried (Na2SO4), and concentrated.
The crude residue was chromatographed on silica gel with
AcOEt–hexane (1:3) to afford compound 6i (230 mg, 93%) as
a light-yellow solid: mp 98–99 ꢀC; 1H NMR (300 MHz,
CDCl3, referenced to TMS) d 1.42 (9H, s), 2.25 (1H, dd,
J=5.1 and 13.8 Hz), 2.78 (1H, dd, J=9.9 and 13.8 Hz), 2.98
(1H, d, J=9.9 Hz), 3.09 (1H, d, J=10.2 Hz), 3.58 (1H, dd,
J=5.1 and 9.2 Hz), 3.66 (3H, s), 3.74 (3H, s), 4.05 (1H, d,
J=14.7 Hz), 4.28 (1H, d, J=14.7 Hz), 5.47 (1H, br s), 7.40
(1H, t, J=6.0 Hz), 7.54 (1H, t, J=7.5 Hz), 7.65 (1H, d,
J=6.9 Hz), 7.84 (1H, d, J=8.1 Hz); 13C NMR (75 MHz,
CDCl3, referenced to central peak of solvent (d=77.0)] d
28.06, 39.34, 52.00, 52.57, 54.52, 61.67, 63.43, 64.13, 79.92,
124.24, 128.05, 130.64, 132.63, 133.49, 149.17, 155.02, 172.22,
173.04. Anal. calcd for C20H27N3O8: C, 54.91; H, 6.22; N,
9.61. Found: C, 54.83; H, 6.14; N, 9.37. The compound 6i
(125 mg, 0.286 mmol) was dissolved in 12 mL of aqueous 6 N
HCl, and the solution was refluxed for 2.5 h. Most of the sol-
vent was removed under reduced pressure, and the residue was
lyophilized to give 9i (103 mg, 94%) as a white solid. Mp 178–
180 ꢀC; 1H NMR (300 MHz, CD3OD, referenced to central
peak of solvent (d=3.31)] d 2.65 (1H, dd, J=9.9 and 14.4 Hz),
References and Notes
1. Nakanishi, S. Science 1992, 258, 597.
2. Nakanishi, S. Neuron 1994, 13, 1031.
3. Reymann, K. G.; Matthies, H. Neurosci.Lett. 1989, 98,
166.
4. Manahan-Vaughan, D.; Reiser, M.; Pin, J.-P.; Wilsch, V.;
Bockaert, J.; Reymann, K. G.; Riedel, G. Neuroscience 1996,
72, 999.
5. Aiba, A.; Cheng, C.; Herrup, K.; Rosenmund, C.; Stevens,
C. F.; Tonegawa, S. Cell 1994, 79, 365.
6. Conn, P. J.; Pin, J.-P. Annu.Rev.Pharmacol.Toxicol. 1997,
37, 205.
7. (a) Monn, J. A.; Valli, M. J.; Massey, S. M.; Wright, R. A.;
Salhoff, C. R.; Johnson, B. G.; Howe, T.; Alt, C. A.; Rhodes,
G. A.; Robey, R. L.; Griffey, K. R.; Tizzano, J. P.; Kallman,
M. J.; Helton, D. R.; Schoepp, D. D. J.Med.Chem. 1997, 40,
528. (b) Monn, J. A.; Valli, M. J.; Massey, S. M.; Hansen,
M. M.; Kress, T. J.; Wepsiec, J. P.; Harkness, A. R.; Grutsch,
J. L., Jr.; Wright, R. A.; Johnson, B. G.; Andis, S. L.; King-
ston, A. E.; Tomlinson, R.; Lewis, R.; Griffey, K. R.; Tizzano,
J. P.; Schoepp, D. D. J.Med.Chem. 1999, 42, 1027.
8. Schoepp, D. D.; Johnson, B. G.; Salhoff, C. R.; Valli, M. J.;
Desai, M. A.; Burnett, J. P.; Mayne, N. G.; Monn, J. A. Neu-
ropharmacology 1995, 34, 843.