M. V. Gil et al. / Tetrahedron: Asymmetry 12 (2001) 1673–1675
1675
Acknowledgements
11.7, H-5%), 3.78 (dd, 1H, J4%,5¦ 7.3, H-5¦), 3.63 (s, 3H,
COOCH3), 2.3–2.1 (m, 2H, H-2¦a, H-2¦b), 2.11 (s, 3H,
OCOCH3), 2.09 (s, 6H, 2×OCOCH3), 2.08 (s, 3H,
OCOCH3), 2.00 (s, 3H, OCOCH3), 1.94 (m, 1H, J5,6a
10.0, H-6a), 1.9–1.45 (m, 4H, H-1¦a, H-1¦b, H-3a, H-6b),
1.72 (m, 1H, H-5), 1.56 (s, 6H, CH3-1, CH3-2), 1.48 (m,
1H, H-3b), 1.37 (m, 1H, H-4); 13C NMR (100 MHz,
CDCl3, ppm): 174.3 (C-3¦), 170.5, 170.4, 170.3, 170.0
(OCOCH3), 123.8, 123.2 (C-1, C-2), 71.0 (C-1%), 68.2
(C-2%, C-3%), 68.1 (C-4%), 62.7 (C-5%), 38.4 (C-5), 35.5 (C-6),
32.5 (C-3, C-2¦), 31.7 (C-4), 30.1 (C-1¦), 21.0, 20.9, 20.8,
20.7 (OCOCH3), 19.3, 18.9 (CH3-1, CH3-2). Anal. calcd
for C27H40O12: C, 58.26; H, 7.24. Found: C, 58.28; H,
7.21%. All the other new compounds were fully charac-
terized by spectroscopic means (1H, 13C NMR, IR) and
analytical or HRMS data.
This work was supported by the Spanish Ministerio de
Educacio´n y Cultura (CICYT, PB98-0997) and the
Junta de Extremadura-Fondo Social Europeo through
grant IPR98A066. We also thank the Junta de
Extremadura for a fellowship to M. V. Gil.
References
1. Kornblum, N.; Carlson, S. C.; Smith, R. G. J. Am.
Chem. Soc. 1978, 100, 290; Ibid. 1979, 101, 647.
2. (a) KOH in ethylene glycol: Krasuska, A. L.; Pitrowska,
H.; Urbanski, T. Tetrahedron Lett. 1979, 1243; (b) 1-Ben-
zyl-1,4-dihydronicotinamide: Ono, N.; Tamura, R.; Kaji,
A. J. Am. Chem. Soc. 1980, 102, 2851; Ibid. 1983, 105,
4017; (c) Lithium aluminium hydride: Rosini, G.; Ballini,
R. Synthesis 1983, 137; (d) Sodium hydrogentelluride:
Suzuki, H.; Takaota, K.; Osuka, A. Bull. Chem. Soc. Jpn.
1985, 58, 1067; (e) Hydride transfer in the presence of a
palladium(0) complex: Ono, N.; Hamamoto, I.;
Kamimura, A.; Kaji, A. J. Org. Chem. 1986, 51, 3734; (f)
Enzymes: Blehert, D. S.; Knoke, K. L.; Fox, B. G.;
Chambliss, G. H. J. Bacteriol. 1997, 179, 6912; (g)
Na2S2O4–Et3SiH in HMPA–H2O: Kamimura, A.;
Kurata, K.; Ono, N. Tetrahedron Lett. 1989, 30, 4819.
3. Tanner, D. D.; Blackburn, E. V.; D´ıaz, G. E. J. Am.
Chem. Soc. 1981, 103, 1557.
12. A single crystal of 2a, crystallizing from methanol by
slow evaporation of the solvent, with approximate size of
0.30×0.20×0.10 mm was employed. The compound crys-
tallized in the monoclinic space group P2 with a=
,
A,
5.8425(5),
b=18.5242(18),
c=13.2751(7)
3
,
i=90.885(4)°, V=1436.6(2) A , Z=2, Dc=1.280 Mg/
m3, v=0.101 mm. The intensities were measured on an
Enraf Nonius Kappa CCD area detector diffractometer
( and ꢀ scans to fill the Ewald sphere). A total of 8586
reflections were collected in the range q 3.07–75° utilizing
,
Mo Ka radiation (u=0.71073 A), and of these 4544 were
independent (Rint=0.0726). The structure was solved by
direct methods with SHELXS-86 (Sheldrick, G. M. Acta
Crystallogr. 1990, A46, 467) and refined by full matrix
least squares using SHELXL-97 (Sheldrick, G. M. Pro-
gram for Crystal Structure Refinement; University of
Go¨ttingen: Germany, 1997). X-Ray crystallographic data
have been deposited with the Cambridge Crystallographic
Data Centre (CCDC 165154), which are available free of
charge from the Director, Cambridge Crystallographic
Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK.
13. From the reaction mixture of 3b, the C(4%) deacetylated
product (5% yield) was isolated in addition to 4b. This
showed C(4%)H at 3.69 ppm, coupled with OH (D2O
exchangeable signal, 3.33 ppm).
4. Ono, N.; Miyake, H.; Tamura, R.; Kaji, A. Tetrahedron
Lett. 1981, 22, 1705.
5. (a) Ono, N.; Miyake, H.; Kamimura, A.; Hamamoto, I.;
Tamura, R.; Kaji, A. Tetrahedron 1985, 41, 4013; (b)
Dupuis, J.; Giese, B.; Hartung, J.; Leising, M. J. Am.
Chem. Soc. 1985, 107, 4332; (c) Chen, Y. J.; Chang, W.
H. J. Org. Chem. 1996, 61, 2536; (d) Grossman, R. B.;
Rasne, R. M.; Patrick, B. O. J. Org. Chem. 1999, 64,
7173.
6. For a general review concerning stereoselection with rad-
ical systems, see: Curran, D. P.; Porter, N. A.; Giese, B.
Stereochemistry of Radical Reactions; VCH: Weinheim,
1996.
7. Brakta, M.; Lhoste, P.; Sinou, D.; Banoub, J. Carbohydr.
Res. 1990, 203, 148.
8. Barco, A.; Benetti, S.; De Risi, C.; Pollini, G. P.; Romag-
noli, R.; Spalluto, G.; Zanirato, V. Tetrahedron 1994, 50,
2583.
14. Probably due to partial deacetylation, the yields of 4b
and 4d were only moderate. In fact, when the crude
denitrohydrogenation mixture from 3b was treated with
sodium metaperiodate, deacetylated derivative 4f was iso-
lated in 64% yield.
15. Compound 2g: [h]D=−3.0 (c 2.0, CHCl3); 4g: [h]D=+3.0
(c 2.0, CHCl3). These enantiomeric compounds were oils,
showing the following spectroscopic data: IR (film, cm−1):
9. (a) Chen, Y. J.; Lin, W. Y. Tetrahedron Lett. 1992, 33,
1749; (b) Chen, Y. J.; Lin, W. Y. Tetrahedron 1993, 49,
10263; (c) Chen, Y. J.; Chen, Ch. M.; Lin, W. Y.
Tetrahedron Lett. 1993, 34, 2961.
1
2900, 2840, 2820, 2700, 1700, 1190, 1150; H NMR (400
MHz, CDCl3, ppm): 9.72 (d, 1H, J5,CHO 1.2, CHO), 3.67
(s, 3H, H-4¦), 2.54 (m, 1H, J4,5=J5,6a=J5,6b 4.0, H-5),
2.38 (m, 2H, H-2¦a, H-2¦b), 2.21 (m, 2H, H-6a, H-6b),
2.13 (d, 1H, J3a,4 5.2, H-3a), 2.06 (m, 1H, H-4), 1.90 (dd,
1H, J3a,3b 16.6, J3b,4 7.3, H-3a), 1.70 (m, 2H, H-1¦a,
H-1¦b), 1.65 and 1.61 (each s, each 3H, CH3-1, CH3-2);
13C NMR (100 MHz, CDCl3, ppm): 205.0 (CHO), 173.7
(C-3¦), 124.7, 123.4 (C-1, C-2), 51.5, 49.5 (C-4¦, C-5),
33.9 (C-4), 35.2, 32.0, 30.2 (C-3, C-6, C-1¦, C-2¦), 19.0,
18.8 (CH3-1, CH3-2).
10. Areces, P.; Gil, M. V.; Higes, F. J.; Roma´n, E.; Serrano,
J. A. Tetrahedron Lett. 1998, 39, 8557.
11. Analytical data for the representative compound 2a:
white solid; yield (unoptimized) 57%; mp 128–130°C; Rf
0.64 (hexane:EtOAc, 1:1); [h]D=+69.5 (c 0.51; CHCl3);
IR (KBr, cm−1): 2980, 2920, 2840, 1730, 1630, 1210, 1020;
1H NMR (400 MHz, CDCl3, ppm): 5.33 (d, 1H, J2%,3% 9.6,
H-2%), 5.16 (m, 1H, H-4%), 5.13 (dd, 1H, J3%,4% 1.6, H-3%),
5.06 (d, 1H, J1%,5 9.2, H-1%), 4.32 (dd, 1H, J4%,5% 4.4, J5%,5¦
.