10.1002/chem.201705913
Chemistry - A European Journal
FULL PAPER
1120–1123; p) C. E. Boott, J. Gwyther, R. L. Harniman, D. W. Hayward,
I. Manners, Nat. Chem. 2017, 9, 785-792.
[15] T. Lorenz, M. Crumbach, T. Eckert, A. Lik, H. Helten, Angew. Chem. Int.
Ed. 2017, 56, 2780–2784; Angew. Chem. 2017, 129, 2824–2828.
[16] a) D. R. Armstrong, J. Jamieson, P. G. Perkins, Theor. Chim. Acta 1978,
49, 55–65; b) A. Abdurahman, M. Albrecht, A. Shukla, M. Dolg, J. Chem.
Phys. 1999, 110, 8819–8824; c) M. Côté, P. D. Haynes, C. Molteni, Phys.
Rev. B 2001, 63, 125207; d) D. Jacquemin, J. Phys. Chem. A 2004, 108,
9260–9266; e) D. Jacquemin, A. Femenias, H. Chermette, J.-M. André,
E. A. Perpète, J. Phys. Chem. A 2005, 109, 5734–5741; f) C. R. Miranda,
G. Ceder, J. Chem. Phys. 2007, 126, 184703; g) J. Li, S. M. Kathmann,
H.-S. Hu, G. K. Schenter, T. Autrey, M. Gutowski, Inorg. Chem. 2010, 49,
7710–7720.
[8]
[9]
A. Staubitz, A. Presa Soto, I. Manners, Angew. Chem. Int. Ed. 2008, 47,
6212–6215; Angew. Chem. 2008, 120, 6308–6311.
a) A. Staubitz, M. E. Sloan, A. P. M. Robertson, A. Friedrich, S. Schneider,
P. J. Gates, J. Schmedt auf der Günne, I. Manners, J. Am. Chem. Soc.
2010, 132, 13332–13345; b) W. C. Ewing, A. Marchione, D. W.
Himmelberger, P. J. Carroll, L. G. Sneddon, J. Am. Chem. Soc. 2011,
133, 17093–17099; c) H. C. Johnson, A. P. M. Robertson, A. B. Chaplin,
L. J. Sewell, A. L. Thompson, M. F. Haddow, I. Manners, A. S. Weller, J.
Am. Chem. Soc. 2011, 133, 11076–11079; d) R. Dallanegra, A. P. M.
Robertson, A. B. Chaplin, I. Manners, A. S. Weller, Chem. Commun.
2011, 47, 3763–3765; e) A. N. Marziale, A. Friedrich, I. Klopsch, M.
Drees, V. R. Celinski, J. Schmedt auf der Günne, S. Schneider, J. Am.
Chem. Soc. 2013, 135, 13342–13355; f) A. P. M. Robertson, E. M. Leitao,
T. Jurca, M. F. Haddow, H. Helten, G. C. Lloyd-Jones, I. Manners, J. Am.
Chem. Soc. 2013, 135, 12670–12683; g) N. E. Stubbs, T. Jurca, E. M.
Leitao, C. H. Woodall, I. Manners, Chem. Commun. 2013, 49, 9098–
9100; h) P. Cui, T. P. Spaniol, L. Maron, J. Okuda, Chem. Eur. J. 2013,
19, 13437–13444; i) A. Kumar, H. C. Johnson, T. N. Hooper, A. S. Weller,
A. G. Algarra, S. A. Macgregor, Chem. Sci. 2014, 5, 2546–2553; j) H. C.
Johnson, E. M. Leitao, G. R. Whittell, I. Manners, G. C. Lloyd-Jones, A.
S. Weller, J. Am. Chem. Soc. 2014, 136, 9078–9093; k) H. C. Johnson,
A. S. Weller, Angew. Chem. Int. Ed. 2015, 54, 10173–10177; Angew.
Chem. 2015, 127, 10311–10315; l) C. Lichtenberg, M. Adelhardt, T. L.
Gianetti, K. Meyer, B. de Bruin, H. Grützmacher, ACS Catal. 2015, 5,
6230−6240; m) A. Glüer, M. Förster, V. R. Celinski, J. Schmedt auf der
Günne, M. C. Holthausen, S. Schneider, ACS Catal. 2015, 5,
7214−7217; n) A. Ledoux, P. Larini, C. Boisson, V. Monteil, J. Raynaud,
E. Lacôte, Angew. Chem. Int. Ed. 2015, 54, 15744–15749; Angew. Chem.
2015, 127, 15970–15975; o) F. Anke, D. Han, M. Klahn, A. Spannenberg,
T. Beweries, Dalton Trans. 2017, 46, 6843–6847.
[17] a) M. G. Hu, R. A. Geanangel, W. W. Wendlandt, Thermochim. Acta
1978, 23, 249–255; b) J. Baumann, F. Baitalow, G. Wolf, Thermochim.
Acta 2005, 430, 9–14; c) A. Gutowska, L. Li, Y. Shin, C. M. Wang, X. S.
Li, J. C. Linehan, R. S. Smith, B. D. Kay, B. Schmid, W. Shaw, M.
Gutowski, T. Autrey, Angew. Chem. Int. Ed. 2005, 44, 3578–3582;
Angew. Chem. 2005, 117, 3644–3648; d) A. C. Stowe, W. J. Shaw, J. C.
Linehan, B. Schmid, T. Autrey, Phys. Chem. Chem. Phys. 2007, 9, 1831–
1836; e) X. Kang, Z. Fang, L. Kong, H. Cheng, X. Yao, G. Lu, P. Wang,
Adv. Mater. 2008, 20, 2756–2759; f) D. J. Heldebrant, A. Karkamkar, N.
J. Hess, M. Bowden, S. Rassat, F. Zheng, K. Rappe, T. Autrey, Chem.
Mater. 2008, 20, 5332–5336; g) R. S. Chellappa, T. Autrey, M.
Somayazulu, V. V. Struzhkin, R. J. Hemley, ChemPhysChem 2010, 11,
93–96; h) S. Frueh, R. Kellett, C. Mallery, T. Molter, W. S. Willis, C.
King'ondu, S. L. Suib, Inorg. Chem. 2011, 50, 783–792; i) X. Wang, C.
Zhi, L. Li, H. Zeng, C. Li, M. Mitome, D. Golberg, Y. Bando, Adv. Mater.
2011, 23, 4072–4076; j) L. H. Jepsen, J. Skibsted, T. R. Jensen, J. Alloys
Compd. 2013, 580, S287–S291; k) L. H. Jepsen, V. Ban, K. T. Møller,
Y.-S. Lee, Y. W. Cho, F. Besenbacher, Y. Filinchuk, J. Skibsted, T. R.
Jensen, J. Phys. Chem. C 2014, 118, 12141–12153.
[18] a) D.-P. Kim, K.-T. Moon, J.-G. Kho, J. Economy, C. Gervais, F.
Babonneau, Polym. Adv. Technol. 1999, 10, 702–712; b) M. E. Bluhm,
M. G. Bradley, R. Butterick, U. Kusari, L. G. Sneddon, J. Am. Chem. Soc.
2006, 128, 7748–7749; c) D. W. Himmelberger, L. R. Alden, M. E. Bluhm,
L. G. Sneddon, Inorg. Chem. 2009, 48, 9883–9889; d) K. Shimoda, K.
Doi, T. Nakagawa, Y. Zhang, H. Miyaoka, T. Ichikawa, M. Tansho, T.
Shimizu, A. K. Burrell, Y. Kojima, J. Phys. Chem. C 2012, 116, 5957–
5964; e) T. Kobayashi, S. Gupta, M. A. Caporini, V. K. Pecharsky, M.
Pruski, J. Phys. Chem. C 2014, 118, 19548–19555.
[10] Examples of emerging applications of boron nitride: a) K. Watanabe, T.
Taniguchi, T. Niiyama, K. Miya, M. Taniguchi, Nat. Photonics 2009, 3,
591–594; b) L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava,
Z. F. Wang, K. Storr, L. Balicas, F. Liu, P. M. Ajayan, Nat. Mater. 2010,
9, 430–435; c) C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S.
Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone,
Nat. Nanotechnol. 2010, 5, 722–726; d) M. P. Levendorf, C.-J. Kim, L.
Brown, P. Y. Huang, R. W. Havener, D. A. Muller, J. Park, Nature 2012,
488, 627–632.
[19] The solid-state NMR data are remarkably similar to those of a poly-
borazylene sample prepared via a different route; see: C. Gervais, F.
Babonneau, J. Organomet. Chem. 2002, 657, 75–82.
[11] a) S. M. Nakhmanson, M. Buongiorno Nardelli, J. Bernholc, Phys. Rev.
Lett. 2004, 92, 115504; b) R. F. Barth, J. A. Coderre, M. G. H. Vicente,
T. E. Blue, Clin. Cancer Res. 2005, 11, 3987–4002.
[20] For the generation of polyborazylenes, see: a) T. Wideman, P. J. Fazen,
K. Su, E. E. Remsen, G. A. Zank, L. G. Sneddon, Appl. Organomet.
Chem. 1998, 12, 681–693; b) S. Bernard, C. Salameh, P. Miele, Dalton
Trans. 2016, 45, 861–873, and references therein.
[12] a) Z. Liu, T. B. Marder, Angew. Chem. Int. Ed. 2008, 47, 242–244; Angew.
Chem. 2008, 120, 248–250; b) M. J. D. Bosdet, W. E. Piers, Can. J.
Chem. 2009, 87, 8–29; c) A. Staubitz, A. P. M. Robertson, M. E. Sloan,
I. Manners, Chem. Rev. 2010, 110, 4023–4078; d) P. G. Campbell, A. J.
V. Marwitz, S.-Y. Liu, Angew. Chem. Int. Ed. 2012, 51, 6074–6092;
Angew. Chem. 2012, 124, 6178–6197; e) X.-Y. Wang, J.-Y. Wang, J. Pei,
Chem. Eur. J. 2015, 21, 3528–3539; f) D. Bonifazi, F. Fasano, M. M.
Lorenzo-Garcia, D. Marinelli, H. Oubaha, J. Tasseroul, Chem. Commun.
2015, 51, 15222–15236; g) M. M. Morgan, W. E. Piers, Dalton Trans.
2016, 45, 5920–5924; h) G. Bélanger-Chabot, H. Braunschweig, D. K.
Roy, Eur. J. Inorg. Chem. 2017, 4353–4368.
[21] J. E. Burch, W. Gerrard, E. F. Mooney, J. Chem. Soc. 1962, 2200–2203.
[22] a) P. Paetzold, T. von Bennigsen-Mackiewicz, Chem. Ber. 1981, 114,
298–305; b) H.-U. Meier, P. Paetzold, E. Schröder, Chem. Ber. 1984,
117, 1954–1964; c) P. Paetzold, Adv. Inorg. Chem. 1987, 31, 123–170.
[23] For recent reports on iminoborane chemistry, see: a) F. Dahcheh, D.
Martin, D. W. Stephan, G. Bertrand, Angew. Chem. Int. Ed. 2014, 53,
13159–13163; Angew. Chem. 2014, 126, 13375–13379; b) H.
Braunschweig, W. C. Ewing, K. Geetharani, M. Schäfer, Angew. Chem.
Int. Ed. 2015, 54, 1662–1664; Angew. Chem. 2015, 127, 1682–1685; c)
A. K. Swarnakar, C. Hering-Junghans, K. Nagata, M. J. Ferguson, R.
McDonald, N. Tokitoh, E. Rivard, Angew. Chem. Int. Ed. 2015, 54,
10666–10669; Angew. Chem. 2015, 127, 10812–10816; d) A. K.
Swarnakar, C. Hering-Junghans, M. J. Ferguson, R. McDonald, E.
Rivard, Chem. Sci. 2017, 8, 2337–2343.
[13] a) N. Matsumi, K. Kotera, Y. Chujo, Macromolecules 2000, 33, 2801–
2806; b) I. Yamaguchi, B.-J. Choi, T.-a. Koizumi, K. Kubota, T.
Yamamoto, Macromolecules 2007, 40, 438–443; c) A. W. Baggett, F.
Guo, B. Li, S.-Y. Liu, F. Jäkle, Angew. Chem. Int. Ed. 2015, 54, 11191–
11195; Angew. Chem. 2015, 127, 11343–11347; d) X.-Y. Wang, F.-D.
Zhuang, J.-Y. Wang, J. Pei, Chem. Commun. 2015, 51, 17532–17535;
e) N. A. Riensch, A. Deniz, S. Kühl, L. Müller, A. Adams, A. Pich, H.
Helten, Polym. Chem. 2017, 8, 5264–5268.
[24] O. Ayhan, T. Eckert, F. A. Plamper, H. Helten, Angew. Chem. Int. Ed.
2016, 55, 13321–13325; Angew. Chem. 2016, 128, 13515–13519.
[25] Si/B exchange condensation of two molecules of 3 should afford a linear
species with eight B and N atoms in a chain. Alternatively, the possible
condensation of 3 with unconsumed 2a should give a five-membered
[14] T. Lorenz, A. Lik, F. A. Plamper, H. Helten, Angew. Chem. Int. Ed. 2016,
55, 7236–7241; Angew. Chem. 2016, 128, 7352–7357.
This article is protected by copyright. All rights reserved.