Organic Letters
Letter
́
́
(2) (a) Alonso, F.; Foubelo, F.; Gonzalez-Gomez, J. C.; Martínez,
Scheme 7. Proposed Reaction Pathway
́
R.; Ramon, D. J.; Riente, P.; Yus, M. Efficiency in chemistry: from
hydrogen autotransfer to multicomponent catalysis. Mol. Diversity
2010, 14, 411−424. (b) Hartshorn, S. R. Aliphatic Nucleophilic
Substitution; Cambridge University Press: London, 1973. (c) Anslyn,
E. V.; Dougherty, D. A. Substitutions at Aliphatic Centers and
Thermal Isomerizations/Rearrangements. Modern Physical Organic
Chemistry; University Science Books: Sausalito, CA, 2006; Chapter
11.
(3) (a) Larock, R. C. Comprehensive organic transformations: a guide
to functional group preparations; Wiley-VCH: New York, 1999; Vol. 1,
pp 1−2640. (b) Frohning, C. D.; Kohlpaintner, C. W. In Applied
Homogeneous Catalysis with Organometallic Compounds; Cornils, B.,
Herrmann, W. A., Eds.; Wiley-VCH: 1996; pp 29−104.
(4) (a) Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide
Linkage: Structural Significance in Chemistry, Biochemistry, and
Materials Science; Wiley-Interscience: New York, 2000. (b) Humphrey,
J. M.; Chamberlin, A. R. Chemical Synthesis of Natural Product
Peptides: Coupling Methods for the Incorporation of Noncoded
Amino Acids into Peptides. Chem. Rev. 1997, 97, 2243−2266.
(c) Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Catalytic
amide formation from non-activated carboxylic acids and amines.
Chem. Soc. Rev. 2014, 43, 2714−2742. (d) El-Faham, A.; Albericio, F.
Peptide Coupling Reagents, More than a Letter Soup. Chem. Rev.
2011, 111, 6557−6602. (e) Valeur, E.; Bradley, M. Amide bond
formation: beyond the myth of coupling reagents. Chem. Soc. Rev.
2009, 38, 606−631.
(5) (a) Montalbetti, C. A. G. N.; Falque, V. Amide bond formation
and peptide coupling. Tetrahedron 2005, 61, 10827−10852.
(b) Pattabiraman, V. R.; Bode, J. W. Rethinking amide bond
synthesis. Nature 2011, 480, 471−479. (c) Lundberg, H.; Tinnis, F.;
Selander, N.; Adolfsson, H. Catalytic amide formation from non-
activated carboxylic acids and amines. Chem. Soc. Rev. 2014, 43,
2714−2742.
(6) (a) Pauling, L. The Nature of the Chemical Bond; Oxford
University Press: London, 1940. (b) Mujika, J. I.; Mercero, J. M.;
Lopez, X. Water-Promoted Hydrolysis of a Highly Twisted Amide:
Rate Acceleration Caused by the Twist of the Amide Bond. J. Am.
Chem. Soc. 2005, 127, 4445−4453. (c) Kemnitz, C. R.; Loewen, M. J.
“Amide Resonance” Correlates with a Breadth of C−N Rotation
Barriers. J. Am. Chem. Soc. 2007, 129, 2521−2528. (d) Meng, G.; Shi,
S.; Lalancette, R.; Szostak, R.; Szostak, M. Reversible Twisting of
Primary Amides via Ground State N−C(O) Destabilization: Highly
Twisted Rotationally Inverted Acyclic Amides. J. Am. Chem. Soc.
2018, 140, 727−734.
(7) (a) Ruider, S. A.; Maulide, N. Strong Bonds Made Weak:
Towards the General Utility of Amides as Synthetic Modules. Angew.
Chem., Int. Ed. 2015, 54, 13856−13858. (b) Lavoie, C. M.;
MacQueen, P. M.; Stradiotto, M. Nickel-Catalyzed N-Arylation of
Primary Amides and Lactams with Activated (Hetero)aryl Electro-
philes. Chem. - Eur. J. 2016, 22, 18752−18755. (c) Dander, J. E.;
Weires, N. A.; Garg, N. K. Benchtop Delivery of Ni(cod)2 using
Paraffin Capsules. Org. Lett. 2016, 18, 3934−3936. (d) Dander, J. E.;
Garg, N. K. Breaking Amides using Nickel Catalysis. ACS Catal. 2017,
7, 1413−1423. (e) Dey, A.; Sasmal, S.; Seth, K.; Lahiri, G. K.; Maiti,
D. Nickel-Catalyzed Deamidative Step-Down Reduction of Amides to
Aromatic Hydrocarbons. ACS Catal. 2017, 7, 433−437. (f) Deguchi,
T.; Xin, H.-L.; Morimoto, H.; Ohshima, T. Direct Catalytic
Alcoholysis of Unactivated 8-Aminoquinoline Amides. ACS Catal.
2017, 7, 3157−3161. (g) Bourne-Branchu, Y.; Gosmini, C.; Danoun,
G. Cobalt-Catalyzed Esterification of Amides. Chem. - Eur. J. 2017, 23,
10043−10047. (h) Wu, H.; Guo, W.; Daniel, S.; Li, Y.; Liu, C.; Zeng,
Z. Fluoride-Catalyzed Esterification of Amides. Chem. - Eur. J. 2018,
24, 3444−3447. (i) Wybon, C. C. D.; Mensch, C.; Hollanders, K.;
Gadais, C.; Herrebout, W. A.; Ballet, S.; Maes, B. U. W. Zn-Catalyzed
tert-Butyl Nicotinate-Directed Amide Cleavage as a Biomimic of
Metallo-Exopeptidase Activity. ACS Catal. 2018, 8, 203−218. (j) Li,
G.; Lei, P.; Szostak, M. Transition-Metal-Free Esterification of
the corresponding intermediate D, whose S−O bond was
further cleaved under basic conditions to generate the
corresponding ester 3.
In summary, we have discovered an unusual reaction, in
which, with the assistance of SO2F2, the carbonyls of amides
performed as nucleophiles while the hydroxyl groups of
alcohols were activated to play as electrophiles to break the
amide C−N bonds and form the ester C−O bonds. The
versatility of this reaction feathered with wide substrate scope
(44 examples) and excellent functional group compatibility
provides a new portal to esters construction from readily
available alcohols and amides.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, characterization data, and
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Author Contributions
#W.-Y.F. and G.-F.Z. contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the National Natural Science Foundation of
China (Grant No. 21772150), the Wuhan applied fundamental
research plan of Wuhan Science and Technology Bureau
(Grant No. 2017060201010216), the 111 Project (Grant No.
B18038), the Fundamental Research Funds for the Central
Universities (2019-YB-001), and Wuhan University of
Technology for the financial support.
REFERENCES
■
(1) (a) Labinger, J. A.; Bercaw, J. E. Understanding and exploiting
C−H bond activation. Nature 2002, 417, 507−514. (b) Godula, K.;
Sames, D. C-H Bond Functionalization in Complex Organic
Synthesis. Science 2006, 312, 67−72.
D
Org. Lett. XXXX, XXX, XXX−XXX