Journal of Medicinal Chemistry
Brief Article
yl)ethanone (5b), and 1-(4-Benzylpiperidin-1-yl)-2-(1H-indol-3-
yl)ethane-1,2-diones (6d,f,h). The appropriate 3-chloroacetylin-
dole derivatives (8b,d,f,h) (1 mmol), benzylpiperidine (0.176 mL, 1
mmol) or benzylpiperazine (176.3 mg, 1 mmol), and K2CO3 (147.1
mg, 0.5 mmol) in DMF (2 mL) were stirred and irradiated in a
microwave oven under the following conditions: 10 min, 100 °C, 200
W. The reaction mixture was quenched with NaHCO3 saturated
aqueous solution (10 mL) and extracted with ethyl acetate (3 × 10
mL). The organic phases were dried over dry Na2SO4. After removal
of the solvent under reduced pressure, the residue was crystallized
from ethanol to give desired 4 and 5. The appropriate indole
derivatives 7d,f,h (1 mmol) were used as starting material to
synthesize 6d,f,h following a previously reported procedure.18
Starting from methoxy substituted derivatives 4d,f,h, 5b, and 6d,f,h,
the corresponding hydroxyl derivatives 4e,g,i, 5c, and 6e,g,i were
prepared using a previously published procedure.18 Detailed analytical
data of all new synthesized compounds are in the Supporting
Information.
(9) Borza, I.; Domany, G. NR2B selective NMDA antagonists: the
evolution of the ifenprodil-type pharmacophore. Curr. Top. Med.
Chem. 2006, 6, 687−695.
(10) Mony, L.; Kew, J. N.; Gunthorpe, M. J.; Paoletti, P. Allosteric
modulators of NR2B-containing NMDA receptors: molecular
mechanisms and therapeutic potential. Br. J. Pharmacol. 2009, 157,
1301−1317.
(11) Karakas, E.; Simorowski, N.; Furukawa, H. Subunit arrangement
and phenylethanolamine binding in GluN1/GluN2B NMDA
receptors. Nature 2011, 475, 249−253.
(12) Beinat, C.; Banister, S.; Moussa, I.; Reynolds, A. J.; McErlean, C.
S.; Kassiou, M. Insights into structure−activity relationships and CNS
therapeutic applications of NR2B selective antagonists. Curr. Med.
Chem. 2010, 17, 4166−4190.
(13) Mony, L.; Krzaczkowski, L.; Leonetti, M.; Le Goff, A.; Alarcon,
K.; Neyton, J.; Bertrand, H. O.; Acher, F.; Paoletti, P. Structural basis
of NR2B-selective antagonist recognition by N-methyl-D-aspartate
receptors. Mol. Pharmacol. 2009, 75, 60−74.
(14) McCauley, J. A. NR2B subtype-selective NMDA receptor
antagonists: 2001−2004. Expert Opin. Ther. Pat. 2005, 15, 389−407.
(15) Nikam, S. S.; Meltzer, L. T. NR2B selective NMDA receptor
antagonists. Curr. Pharm. Des. 2002, 8, 845−855.
(16) Gitto, R.; De Luca, L.; Ferro, S.; Occhiuto, F.; Samperi, S.; De
Sarro, G.; Russo, E.; Ciranna, L.; Costa, L.; Chimirri, A.
Computational studies to discover a new NR2B/NMDA receptor
antagonist and evaluation of pharmacological profile. ChemMedChem
2008, 3, 1539−1548.
(17) Chimirri, A.; De Luca, L.; Ferro, S.; De Sarro, G.; Ciranna, L.;
Gitto, R. Combined strategies for the discovery of ionotropic
glutamate receptor antagonists. ChemMedChem 2009, 4, 917−922.
(18) Gitto, R.; De Luca, L.; Ferro, S.; Citraro, R.; De Sarro, G.;
Costa, L.; Ciranna, L.; Chimirri, A. Development of 3-substituted-1H-
indole derivatives as NR2B/NMDA receptor antagonists. Bioorg. Med.
Chem. 2009, 17, 1640−1647.
(19) Antonini, V.; Prezzavento, O.; Coradazzi, M.; Marrazzo, A.;
Ronsisvalle, S.; Arena, E.; Leanza, G. Anti-amnesic properties of
(+/−)-PPCC, a novel sigma receptor ligand, on cognitive dysfunction
induced by selective cholinergic lesion in rats. J. Neurochem. 2009, 109,
744−754.
(20) Tewes, B.; Frehland, B.; Schepmann, D.; Schmidtke, K. U.;
Winckler, T.; Wunsch, B. Design, synthesis, and biological evaluation
of 3-benzazepin-1-ols as NR2B-selective NMDA receptor antagonists.
ChemMedChem 2010, 5, 687−695.
(21) Cobos, E. J.; Entrena, J. M.; Nieto, F. R.; Cendan, C. M.; Del
Pozo, E. Pharmacology and therapeutic potential of sigma(1) receptor
ligands. Curr. Neuropharmacol. 2008, 6, 344−366.
(22) Maurice, T.; Su, T. P. The pharmacology of sigma-1 receptors.
Pharmacol. Ther. 2009, 124, 195−206.
(23) Monnet, F. P.; Debonnel, G.; Junien, J. L.; De Montigny, C. N-
Methyl-D-aspartate-induced neuronal activation is selectively
modulated by sigma receptors. Eur. J. Pharmacol. 1990, 179, 441−445.
(24) Martina, M.; Turcotte, M. E.; Halman, S.; Bergeron, R. The
sigma-1 receptor modulates NMDA receptor synaptic transmission
and plasticity via SK channels in rat hippocampus. J. Physiol. 2007, 578,
143−157.
(25) Moussa, I. A.; Banister, S. D.; Beinat, C.; Giboureau, N.;
Reynolds, A. J.; Kassiou, M. Design, synthesis, and structure−affinity
relationships of regioisomeric N-benzyl alkyl ether piperazine
derivatives as sigma-1 receptor ligands. J. Med. Chem. 2010, 53,
6228−6239.
(26) Glennon, R. A. Pharmacophore identification for sigma-1
(sigma1) receptor binding: application of the “deconstruction−
reconstruction−elaboration” approach. Mini-Rev. Med. Chem. 2005,
5, 927−940.
(27) Chapman, A. G.; Croucher, M. J.; Meldrum, B. S. Evaluation of
anticonvulsant drugs in DBA/2 mice with sound-induced seizures.
Arzneim. Forsch. 1984, 34, 1261−1264.
(28) Delano, W. L. The PyMOL Molecular Graphics System, version
0.99; Schrodinger LLC: San Francisco, CA, 2006.
ASSOCIATED CONTENT
* Supporting Information
Details for synthetic procedures and spectral data, assay
protocols, dose−response curves, binding affinity data, and
modeling parameters. This material is available free of charge
■
S
AUTHOR INFORMATION
Corresponding Author
*For R.G.: phone, 00390906766413; fax, 00390906766402; e-
■
ACKNOWLEDGMENTS
Financial support for this research by MiUR (Prin2008, Grant
No. 20085HR5JK_002) is gratefully acknowledged.
■
ABBREVIATIONS USED
■
ABD, agonist-binding domain; CTD, carboxy terminal domain;
DBA, dilute brown, nonagouti; iGluR, ionotropic glutamate
receptor; HCN-1A, human cortical neuron 1A cell line;
NMDA, N-methyl-D-aspartate; NMDAR, N-methyl-D-aspartate
receptor; ATD, amino-terminal domain; PA, proton affinity;
rmsd, root mean square deviation; TTX, tetrodotoxin
REFERENCES
■
(1) Paoletti, P. Molecular basis of NMDA receptor functional
diversity. Eur. J. Neurosci. 2011, 33, 1351−1365.
(2) Muir, K. W. Glutamate-based therapeutic approaches: clinical
trials with NMDA antagonists. Curr. Opin. Pharmacol. 2006, 6, 53−60.
(3) Traynelis, S. F.; Wollmuth, L. P.; McBain, C. J.; Menniti, F. S.;
Vance, K. M.; Ogden, K. K.; Hansen, K. B.; Yuan, H.; Myers, S. J.;
Dingledine, R. Glutamate receptor ion channels: structure, regulation,
and function. Pharmacol. Rev. 2010, 62, 405−96.
(4) Paoletti, P.; Neyton, J. NMDA receptor subunits: function and
pharmacology. Curr. Opin. Pharmacol. 2007, 7, 39−47.
(5) Collingridge, G. L.; Olsen, R. W.; Peters, J.; Spedding, M. A
nomenclature for ligand-gated ion channels. Neuropharmacology 2009,
56, 2−5.
(6) Gielen, M.; Siegler Retchless, B.; Mony, L.; Johnson, J. W.;
Paoletti, P. Mechanism of differential control of NMDA receptor
activity by NR2 subunits. Nature 2009, 459, 703−707.
(7) Kohr, G. NMDA receptor antagonists: tools in neuroscience with
promise for treating CNS pathologies. J. Physiol. (London) 2007, 581,
1−2.
(8) Gogas, K. R. Glutamate-based therapeutic approaches: NR2B
receptor antagonists. Curr. Opin. Pharmacol. 2006, 6, 68−74.
8706
dx.doi.org/10.1021/jm2008002 | J. Med. Chem. 2011, 54, 8702−8706