2278 J ournal of Medicinal Chemistry, 2003, Vol. 46, No. 12
Letters
(13) Higaki, J . N.; Chakravarty, S.; Bryant, C. M.; Cowart, L. R.;
Harden, P.; Scardina, J . M.; Mavunkel, B.; Luedtke, G. R.;
Cordell, B. A combinatorial approach to the identification of
dipeptide aldehyde inhibitors of â-amyloid production. J . Med.
Chem. 1999, 42, 3889-3898.
(14) Thompson, R. C.; Wilkie, S.; Stack, D. R.; Vanmeter, E. E.; Shi,
Q.; Britton, T. C.; Audia, J . E.; Reel, J . K.; Mabry, T. E.;
Dressman, B. A.; Cwi, C. L.; Henry, S. S.; McDaniel, S. L.;
Stucky, R. D.; Porter, W. J . Preparation of cyclic amino acid
compounds for inhibiting â-amyloid peptide release and/or its
synthesis. Patent WO 9967221, 1999.
(15) Olson, R. E.; Liu, H.; Thompson, L. A., III. Preparation and use
of hydroxyalkanoyl aminolactams and related structures as
inhibitors of Aâ protein production. Patent WO 0119797, 2001.
(16) Rishton, G. M.; Retz, D. M.; Tempest, P. A.; Novotny, J .; Kahn,
S.; Treanor, J . J . S.; Lile, J . D.; Citron, M. Fenchylamine
sulfonamide inhibitors of amyloid â peptide production by the
γ-secretase proteolytic pathway: potential small-molecule thera-
peutic agents for the treatment of Alzheimer’s disease. J . Med.
Chem. 2000, 43, 2297-2299.
(17) Seiffert, D.; et al. Presenilin-1 and -2 are molecular targets for
γ-secretase inhibitors. J . Biol. Chem. 2000, 275, 34086-34091.
(18) Belanger, P. C.; Collins, I. J .; Hannam, J . C.; Harrison, T.; Lewis,
S. J .; Madin, A.; McIver, E. G.; Nadin, A. J .; Neduvelil, J . G.;
Shearman, M. S.; Smith, A. L.; Sparey, T. J .; Stevenson, G. I.;
Teall, M. R. Synthesis of sulfonamido-substituted bridged bicy-
cloalkyl derivatives as γ-secretase inhibitors. Patent WO 0170677,
2001.
interaction of the hydroxyl group to be important in the
binding of these analogues.
Further hydroxyl homologation to the â-hydroxylethyl
analogue 32 led to a large reduction in potency. The
optimal C-3 amide side chain could also be introduced
onto other benzodiazepine cores to yield, for example,
34 or 36 with maintenance of excellent levels of potency.
Selective N-methylation of 34 was also possible, and this
transformation using CT3I was utilized in the synthesis
of radiolabel (CT3)-28, which has found use in in vitro
binding studies.32
Con clu sion s. A series of benzodiazepine γ-secretase
inhibitors bearing a C-3 hydrocinnamide side chain has
been developed and yielded highly potent compounds
(e.g., 34, 0.06 nM) resulting from systematic optimiza-
tion of hydroxylated derivatives. This compound was
prepared using a modified Corey asymmetric Ireland-
Claisen rearrangement. The N(1)-H analogue 34 could
also be radiolabeled by N-methylation to yield the useful
radioligand (CT3)-28.
(19) Dovey, H. F.; et al. Functional gamma-secretase inhibitors reduce
beta-amyloid peptide levels in brain. J . Neurochem. 2001, 76,
173-181.
(20) Clarke, E. E.; Shearman, M. S. Quantitation of amyloid-â
peptides in biological milieu using a novel homogeneous time-
resolved fluorescence (HTRF) assay. J . Neurosci. Methods 2000,
102, 61-68.
(21) Churcher, I.; Ashton, K.; Butcher, J . W.; Clarke, E. E.; Harrison,
T.; Owens, A. P.; Teall, M. R.; Williams, S.; Wrigley, J . D. J . A
new series of potent benzodiazepine γ-secretase inhibitors.
Bioorg. Med. Chem. Lett. 2003, 13, 179-183.
(22) Castro Pineiro, J . L.; Churcher, I.; Guiblin, A. R.; Harrison, T.;
Kerrad, S.; Madin, A.; Nadin, A. J .; Owens, A. P.; Sparey, T. J .;
Teall, M. R.; Williams, S. Benzodiazepine derivatives as amyloid
precursor protein modulators. Patent WO 0190084, 2001.
(23) Evans, D. A.; Ennis, M. D.; Mathre, D. J . Asymmetric alkylation
reactions of chiral imide enolates. A practical approach to the
enantioselective synthesis of R-substituted carboxylic acid de-
rivatives. J . Am. Chem. Soc. 1982, 104, 1737-1739.
(24) Reider, P. J .; Davis, P.; Hughes, D. L.; Grabowski, E. J . J .
Crystallization-induced asymmetric transformation: stereospe-
cific synthesis of a potent peripheral CCK antagonist. J . Org.
Chem. 1987, 52, 955-957.
(25) Sydnes, L. K. Chemistry of gem-dihalocyclopropanes. XII.
Preparation of gem-dibromocyclopropyl ketones and alkyl gem-
dibromocyclopropanecarboxylates under phase transfer condi-
tions. Acta Chem. Scand., Ser. B 1977, 31, 823-825.
(26) Svendsen, J . S.; Sydnes, L. K. Selective formation of 4-bromo-
3-methyl-2-(5H)-furanone by solvolysis of 2,2-dibromo-1-methyl
cyclopropanecarboxylic acid. Acta Chem. Scand. 1990, 44, 202-
204.
(27) Miyaura, N.; Yanagi, T.; Suzuki, A. The palladium-catalyzed
cross-coupling reaction of phenylboronic acid with haloarenes
in the presence of bases. Synth. Commun. 1981, 11, 513-519.
(28) Heitz, M.-P.; Overman, L. E. Complementary use of iminium
ion and N-acyl iminium ion cyclization initiators for asymmetric
synthesis of both enantiomers of hydroxylated indolizidines. J .
Org. Chem. 1989, 54, 2591-2596.
(29) Corey, E. J .; Lee, D.-H. Highly enantioselective and diastereo-
selective Ireland-Claisen rearrangement of achiral allylic esters.
J . Am. Chem. Soc. 1991, 113, 4026-4028.
Ack n ow led gm en t. The authors thank Beth Oxley,
Robert Newman, and Ian Gowers for assistance in
screening and the Terlings Park Physical Methods
group for analytical support.
Su p p or tin g In for m a tion Ava ila ble: Spectral data for all
new compounds, experimental protocols for the asymmetric
Ireland-Claisen reaction and radiolabeling process and details
of the biological assay protocol. This material is available free
Refer en ces
(1) J hee, S.; Shiovitz, T.; Crawford, A. W.; Cutler, N. R. Beta-amyloid
therapies in Alzheimer’s Disease. Expert Opin. Invest. Drugs
2001, 10, 593-605.
(2) Sambamurti, K.; Grieg, N. H.; Lahiri, D. K. Advances in the
cellular and molecular biology of the â-amyloid protein in
Alzheimer’s disease. NeuroMol. Med. 2002, 1, 1-31.
(3) Rogaeva, E. The solved and unsolved mysteries of the genetics
of early-onset Alzheimer’s disease. NeuroMol. Med. 2002, 2,
1-10.
(4) Wolfe, M. S. Presenilin and gamma-secretase: structure meets
function. J . Neurochem. 2001, 76, 1615-1620.
(5) Checler, F. The multiple paradoxes of presenilins. J . Neurochem.
2001, 76, 1621-1627.
(6) Selkoe, D. J . Alzheimer’s disease: genes, proteins, and therapy.
Physiol. Rev. 2001, 81, 741-766.
(7) Hardy, J .; Higgins, G. A. Alzheimer’s disease: the amyloid
cascade hypothesis. Science 1992, 256, 184-185.
(8) Selkoe, D. J .; Podlisny, M. B.; J oachim, C. L.; Vickers, E. A.;
Lee, G.; Fritz, L. C.; Oltersdorf, T. â-Amyloid precursor protein
of Alzheimer disease occurs as 110- to 135-kD membrane-
associated proteins in neural and nonneural tissues. Proc. Natl.
Acad. Sci. U.S.A. 1988, 85, 7341-7345.
(9) Tsai, J .-Y.; Wolfe, M. S.; Xia, W. The search for γ-secretase and
development of inhibitors. Curr. Med. Chem. 2002, 9, 1087-
1106.
(10) Several other substrates for γ-secretase are now known, most
notably Notch. For a review, see the following. Sisodia, S. S.;
St. George-Hyslop, P. H. γ-Secretase, Notch, Aâ and Alzheimer’s
disease: Where do the presenilins fit in? Nat. Rev. Neurosci.
2002, 3, 281-290.
(11) Felsenstein, K.; Smith, D. W.; Poss, M. A.; Chaturvedula, P.;
Sloan, C. P. 5-Amino-6-cyclohexyl-4-hydroxy-hexanamide de-
rivatives as inhibitors of â-amyloid protein production. U.S.
Patent 5,703,129, 1997.
(30) For a review of asymmetric Claisen rearrangements, see the
following. Enders, D.; Knopp, M.; Schiffers, R. Asymmetric [3.3]-
sigmatropic rearrangements in organic synthesis. Tetrahedron,
Asymmetry 1996, 7, 1847-1882.
(31) Claremon, D. A.; Liverton, N.; Selnick, H. G.; Smith, G. R.
Preparation of novel N-(1-alkyl-5-phenyl-2,3,4,5-tetrahydro-1H-
benzo[b][1,4]diazepin-3-yl)acetamides for treatment of arrhyth-
mia. Patent WO 9640653, 1996.
(12) Wolfe, M. S.; Citron, M.; Diehl, T. S.; Xia, W.; Donkor, I. O.;
Selkoe, D. J . A Substrate-based difluoro ketone selectively
inhibits Alzheimer’s γ-secretase activity. J . Med. Chem. 1998,
41, 6-9.
(32) Clarke, E. E.; Churcher, I.; Wrigley, J . D. J .; Harrison, T.;
Shearman, M. S.; Beher, D. Manuscript in preparation.
J M034058A