Page 7 of 11
Journal of the American Chemical Society
9. For reviews and perspective on photocatalytic N-radical
REFERENCES
generation, see: (a) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao,
W.-J. Visible light photoredox-controlled reactions of N-
radicals and radical ions. Chem. Soc. Rev. 2016, 45, 2044. (b)
Xiong, T.; Zhang, Q. New amination strategies based on
nitrogen-centered radical chemistry. Chem. Soc. Rev. 2016,
45, 3069. (c) Kärkäs, M. D. Photochemical Generation of
Nitrogen-Centered Amidyl, Hydrazonyl, and Imidyl
Radicals: Methodology Developments and Catalytic
Applications. ACS Catal. 2017, 7, 4999.
1
2
3
4
5
6
7
8
1.
For relevant books and reviews, see: (a) Quin, L. D.; Tyrell,
J. A. Fundamentals of heterocyclic chemistry: importance in
nature and in the synthesis of pharmaceuticals. John Wiley
&
Sons, 2010. (b) Joule, J. A.; Mills, K. Heterocyclic
chemistry at a glance. John Wiley & Sons, 2012. (c) Im, Y.;
Byun, S. Y.; Kim, J. H.; Lee, D. R.; Oh, C. S.; Yook, K. S.; Lee,
J. Y. Recent Progress in High‐Efficiency Blue‐Light‐Emitting
Materials for Organic Light‐Emitting Diodes. Adv. Funct.
Mater. 2017, 27, 1603007.
10. For selected examples on utilizing N-H bond in N-radical
generation, see: (a) Hu, X.-Q.; Chen, J.-R.; Wei, Q.; Liu, F.-
L.; Deng, Q.-H.; Beauchemin, A. M.; Xiao, W.-J.
Photocatalytic generation of N-centered hydrazonyl
radicals: a strategy for hydroamination of β,γ-unsaturated
hydrazones. Angew. Chem., Int. Ed. 2014, 53, 12163. (b) Choi,
G. J.; Knowles, R. R. Catalytic Alkene Carboaminations
Enabled by Oxidative Proton-Coupled Electron Transfer. J.
Am. Chem. Soc. 2015, 137, 9226. (c) Choi, G. J.; Zhu, Q.;
Miller, D. C.; Gu, C. J.; Knowles, R. R. Catalytic alkylation of
remote C–H bonds enabled by proton-coupled electron
transfer. Nature 2016, 539, 268. (d) Chu, J. C. K.; Rovis, T.
Amide-directed photoredox-catalysed C–C bond formation
at unactivated sp3 C–H bonds. Nature 2016, 539, 272. (e)
Wappes, E. A.; Nakafuku, K. M.; Nagib, D. A. Directed β C–
H Amination of Alcohols via Radical Relay Chaperones. J.
Am. Chem. Soc. 2017, 139, 10204. (f) Shu, W.; Genoux, A.; Li,
9
2. (a) Wu, X.-F., ed. Transition Metal-catalyzed Heterocycle
Synthesis via C-H Activation. John Wiley & Sons, 2015. (b)
Scriven, E. F. V.; Ramsden, C. A. eds. Advances in
Heterocyclic Chemistry. Elsevier, 2017, 123, 1.
3. (a) Majumdar, K. C.; and Chattopadhyay, S. K.
eds. Heterocycles in natural product synthesis. John Wiley &
Sons, 2011. (b) Eicher, T.; Hauptmann, S.; Speicher, A. The
Chemistry of Heterocycles: Structures, Reactions, Synthesis,
and Applications. John Wiley & Sons, 2013.
4. For reviews on ring expansion reactions, see: (a) D´hooghe,
M.; Ha, H.-J. Synthesis of 4-to 7-membered Heterocycles by
Ring Expansion. Top. Heterocycl. Chem. 2016, 41, 311. (b)
Bull, J. A.; Croft, R. A.; Davis, O. A.; Doran, R.; Morgan, K. F.
Oxetanes: Recent Advances in Synthesis, Reactivity, and
Medicinal Chemistry. Chem. Rev. 2016, 116, 12150. (c)
Donald, J. R.; Unsworth, W. P. Ring‐Expansion Reactions in
the Synthesis of Macrocycles and Medium‐Sized Rings.
Chem. Eur. J. 2017, 23, 8780.
5. For books and reviews on cycloreversion of 5, 6-membered
heterocycles, see: (a) Van der Plas, H. C. Advances in
Heterocyclic Chemistry. Elsevier, 1999, 74, 1. (b) Katritzky,
A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K., Eds.
Comprehensive Heterocyclic Chemistry III; Pergamon:
Oxford, UK, 2008. (c) Hajós, G.; Riedl, Z.; Kollenz,
G. Recent Advances in Ring Transformations of
Five‐Membered Heterocycles and Their Fused Derivatives.
Eur. J. Org. Chem. 2001, 3405.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Z.; Nevado, C. γ ‐Functionalizations of Amines through
Visible‐Light‐Mediated, Redox‐Neutral C−C Bond Cleavage.
Angew. Chem. Int. Ed. 2017, 56, 10521. (g) Becker, P.;
Duhamel, T.; Stein, C. J.; Reiher, M.; Muñiz, K. Cooperative
Light‐Activated Iodine and Photoredox Catalysis for the
Amination of Csp3−H Bonds. Angew. Chem. Int. Ed. 2017, 56,
8004. (h) Zhu, Q.; Graff, D. E.; Knowles, R. R.
Intermolecular Anti-Markovnikov Hydroamination of
Unactivated Alkenes with Sulfonamides Enabled by Proton-
Coupled Electron Transfer. J. Am. Chem. Soc. 2018, 140, 741.
(i) Morcillo, S. P.; Dauncey, E. M.; Kim, J. H.; Douglas, J. J.;
Sheikh, N. S.; Leonori, D. Photoinduced Remote
Functionalization of Amides and Amines Using
Electrophilic Nitrogen Radicals. Angew. Chem. Int. Ed. 2018,
57, 12945. (j) Jia, J.; Ho, Y. A.; Below, R. F.; Rueping, M.
Brønsted Base Assisted Photoredox Catalysis: Proton
Coupled Electron Transfer for Remote C−C Bond Formation
via Amidyl Radicals. Chem. Eur. J. 2018, 24, 14054. (k) Moon,
Y.; Jang, E.; Choi, S.; Hong, S. Visible-Light-Photocatalyzed
Synthesis of Phenanthridinones and Quinolinones via
Direct Oxidative C–H Amidation. Org. Lett. 2018, 20, 240.
(l) Wu, K.; Wang, L.; Colón‐Rodríguez, S.; Flechsig, G.-U.;
Wang, T. Amidyl Radical Directed Remote Allylation of
Unactivated sp3 C-H Bonds by Organic Photoredox
Catalysis. Angew. Chem. Int. Ed. 2019, 58, 1774.
6. (a) Landais, Y. eds. Free-Radical Synthesis and
Functionalization of Heterocycles. Top. Heterocycl. Chem.
Springer, 2018, 54. (b) Das, R.; Kapur, M.
Transition‐Metal‐Catalyzed
C−H
Functionalization
Reactions of π‐Deficient Heterocycles. Asian J. Org. Chem.
2018, 7, 1217.
7. For relevant reviews on photocatalysis, see: (a) Stephenson,
C. R. J.; Yoon, T. R.; MacMillan, D. W. C. eds. Visible Light
Photocatalysis in Organic Chemistry. John Wiley & Sons,
2018. (b) D. Cambié, C. Bottecchia, N. J. W. Straathof, V.
Hessel, T. Noël, Applications of Continuous-Flow
Photochemistry in Organic Synthesis, Material Science, and
Water Treatment. Chem. Rev. 2016, 116, 10276. (c) Romero,
N. A.; Nicewicz, D. A. Organic Photoredox Catalysis. Chem.
Rev. 2016, 116, 10075. (d) Marzo, L.; Pagire, S. K.; Reiser, O.;
König, B. Visible-Light Photocatalysis: Does It Make a
Difference in Organic Synthesis? Angew. Chem. Int. Ed.
2018, 57, 10034.
8. For our previous contributions in the area, see: (a) Iqbal, N.;
Jung, J.; Park, S.; Cho, E. J. Controlled Trifluoromethylation
Reactions of Alkynes through Visible‐Light Photoredox
Catalysis. Angew. Chem. Int. Ed. 2014, 53, 539. (b) Choi, S.;
Chatterjee, T.; Choi, W. J.; You, Y.; Cho, E. J. Synthesis of
Carbazoles by a Merged Visible Light Photoredox and
Palladium-Catalyzed Process. ACS Catal. 2015, 5, 4796. (c)
Chatterjee, T.; Iqbal, N.; You, Y.; Cho, E. J. Controlled
Fluoroalkylation Reactions by Visible-Light Photoredox
Catalysis. Acc. Chem. Res. 2016, 49, 2284.
11. For selected examples on photocatalytic N-radical cascade
reactions, see: (a) Hu, X.-Q.; Qi, X.-T.; Chen, J.-R.; Zhao, Q.-
Q.; Wei, Q.; Lan, Y.; Xiao, W.-J. Catalytic N-radical cascade
reaction of hydrazones by oxidative deprotonation electron
transfer and TEMPO mediation. Nat. Commun. 2016, 7,
11188. (b) Morris, S. A.; Wang, J.; Zheng, N. The Prowess of
Photogenerated Amine Radical Cations in Cascade
Reactions: From Carbocycles to Heterocycles. Acc. Chem.
Res. 2016, 49, 1957. (c) Zheng, S.; Gutiérrez-Bonet, Á.;
Molander, G. A. Merging Photoredox PCET with Ni-
Catalyzed Cross-Coupling: Cascade Amidoarylation of
Unactivated Olefins. Chem 2019, 5, 339.
12. For selected examples on photocatalytic N-radical
generation by N-N, N-O and N-X bond cleavages, see: (a)
ACS Paragon Plus Environment