Page 9 of 21
Journal of the American Chemical Society
Musmade, D. S.; Pattan, S. R.; Yalgatti, M. S., Oxadiazole a nucleus
with versatile biological behaviour. Int. J. Pharm. Chem. 2015, 5 (1),
17.
Yang, F.; Gao, J.; Che, J.; Jia, G.; Wang, C., A Dimethyl-
Labeling-Based Strategy for Site-Specifically Quantitative Chemical
Proteomics. Anal Chem 2018, 90 (15), 9576-9582.
18.
1
2
3
4
5
6
7
8
11-20.
6.
(a) Farrukh, A.; Paez, J. I.; Salierno, M.; del Campo, A., Bi-
(a) Bar-Peled, L.; Kemper, E. K.; Suciu, R. M.; Vinogra-
oconjugating Thiols to Poly(acrylamide) Gels for Cell Culture Using
Methylsulfonyl Co-monomers. Angew. Chem., Int. Ed. 2016, 55 (6),
2092-2096; (b) Pedzisa, L.; Li, X.; Rader, C.; Roush, W. R., Assess-
ment of reagents for selenocysteine conjugation and the stability of se-
lenocysteine adducts. Org. Biomol. Chem. 2016, 14 (22), 5141-5147.
dova, E. V.; Backus, K. M.; Horning, B. D.; Paul, T. A.; Ichu, T. A.;
Svensson, R. U.; Olucha, J.; Chang, M. W.; Kok, B. P.; Zhu, Z.; Ihle,
N. T.; Dix, M. M.; Jiang, P.; Hayward, M. M.; Saez, E.; Shaw, R. J.;
Cravatt, B. F., Chemical Proteomics Identifies Druggable Vulnerabili-
ties in a Genetically Defined Cancer. Cell 2017, 171 (3), 696-709 e23;
(b) Grossman, E. A.; Ward, C. C.; Spradlin, J. N.; Bateman, L. A.;
Huffman, T. R.; Miyamoto, D. K.; Kleinman, J. I.; Nomura, D. K., Co-
valent Ligand Discovery against Druggable Hotspots Targeted by Anti-
cancer Natural Products. Cell Chem. Biol. 2017, 24 (11), 1368-1376
e4.
7.
Bueno, A. B.; Showalter, A. D.; Wainscott, D. B.; Stutsman,
C.; Marin, A.; Ficorilli, J.; Cabrera, O.; Willard, F. S.; Sloop, K. W.,
Positive Allosteric Modulation of the Glucagon-like Peptide-1 Recep-
tor by Diverse Electrophiles. J. Biol. Chem. 2016, 291 (20), 10700-15.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
8.
Chen, B.; Long, Q.; Zhao, Y.; Wu, Y.; Ge, S.; Wang, P.;
Yang, C.-G.; Chi, Y.; Song, B.; Yang, S., Sulfone-Based Probes Un-
raveled Dihydrolipoamide S-Succinyltransferase as an Unprecedented
Target in Phytopathogens. J. Agric. Food Chem. 2019, 67 (25), 6962-
6969.
19.
Chiotellis, A.; Sladojevich, F.; Mu, L.; Müller Herde, A.;
Valverde, I. E.; Tolmachev, V.; Schibli, R.; Ametamey, S. M.; Mindt,
T. L., Novel chemoselective 18F-radiolabeling of thiol-containing bio-
molecules under mild aqueous conditions. Chem. Commun. 2016, 52
(36), 6083-6086.
9.
(a) Lad, N. P.; Manohar, Y.; Mascarenhas, M.; Pandit, Y. B.;
Kulkarni, M. R.; Sharma, R.; Salkar, K.; Suthar, A.; Pandit, S. S., Me-
thylsulfonyl benzothiazoles (MSBT) derivatives: Search for new po-
tential antimicrobial and anticancer agents. Bioorganic & Medicinal
Chemistry Letters 2017, 27 (5), 1319-1324; (b) Xu, W.; Yang, S.; Bha-
dury, P.; He, J.; He, M.; Gao, L.; Hu, D.; Song, B., Synthesis and bio-
activity of novel sulfone derivatives containing 2,4-dichlorophenyl
substituted 1,3,4-oxadiazole/thiadiazole moiety as chitinase inhibitors.
Pestic. Biochem. Physiol. 2011, 101 (1), 6-15; (c) Su, S.; Zhou, X.;
Zhou, Y.; Liao, G.; Shi, L.; Yang, X.; Zhang, X.; Jin, L., Synthesis and
Biological Evaluation of Novel Sulfone Derivatives Containing 1,3,4-
Oxadiazole Moiety. World J. Org. Chem. 2014, 2 (1), 18-27.
20.
Hansch, C.; Leo, A.; Taft, R. W., A survey of Hammett sub-
stituent constants and resonance and field parameters. Chem. Rev.
1991, 91 (2), 165-195.
21.
K.; Skånberg, I.; Weidolf, L., Stereoselective Metabolism of Omepra-
zole by Human Cytochrome P450 Enzymes. Drug Metab. Dispos.
2000, 28 (8), 966; (b) Lipsky, J. J., Mechanism of the inhibition of the
gamma-carboxylation of glutamic acid by N-methylthiotetrazole-con-
taining antibiotics. Proc. Natl. Acad. Sci. U. S. A. 1984, 81 (9), 2893.
(a) Äbelö, A.; Andersson, T. B.; Antonsson, M.; Naudot, A.
22.
Aitken, A.; Learmonth, M., Carboxymethylation of Cysteine
Using Iodoacetamide/Iodoacetic Acid. In The Protein Protocols Hand-
book, Walker, J. M., Ed. Humana Press: Totowa, NJ, 1996; pp 339-
340.
10.
Bauer, M. R.; Joerger, A. C.; Fersht, A. R., 2-Sulfonylpy-
rimidines: Mild alkylating agents with anticancer activity toward p53-
compromised cells. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (36),
E5271-80.
23.
Suttapitugsakul, S.; Xiao, H.; Smeekens, J.; Wu, R., Evalu-
ation and optimization of reduction and alkylation methods to maxim-
ize peptide identification with MS-based proteomics. Mol. BioSyst.
2017, 13 (12), 2574-2582.
11.
Coulson, G. B.; Johnson, B. K.; Zheng, H.; Colvin, C. J.;
Fillinger, R. J.; Haiderer, E. R.; Hammer, N. D.; Abramovitch, R. B.,
Targeting Mycobacterium tuberculosis Sensitivity to Thiol Stress at
Acidic pH Kills the Bacterium and Potentiates Antibiotics. Cell Chem.
Biol. 2017, 24 (8), 993-1004 e4.
24.
Chalkley, R. J., When target-decoy false discovery rate esti-
mations are inaccurate and how to spot instances. J Proteome Res 2013,
12 (2), 1062-4.
25.
M.; Zaro, B. W.; Bradshaw, J. M.; Brameld, K. A.; Cravatt, B. F., The
Proteome-Wide Potential for Reversible Covalency at Cysteine. An-
gew. Chem., Int. Ed. 2019, 58 (33), 11385-11389.
12.
Kahl, D. J.; Hutchings, K. M.; Lisabeth, E. M.; Haak, A. J.;
Senkane, K.; Vinogradova, E. V.; Suciu, R. M.; Crowley, V.
Leipprandt, J. R.; Dexheimer, T.; Khanna, D.; Tsou, P. S.; Campbell,
P. L.; Fox, D. A.; Wen, B.; Sun, D.; Bailie, M.; Neubig, R. R.; Larsen,
S. D., 5-Aryl-1,3,4-oxadiazol-2-ylthioalkanoic Acids: A Highly Potent
New Class of Inhibitors of Rho/Myocardin-Related Transcription Fac-
tor (MRTF)/Serum Response Factor (SRF)-Mediated Gene Transcrip-
tion as Potential Antifibrotic Agents for Scleroderma. J .Med. Chem.
2019, 62 (9), 4350-4369.
26.
Patricelli, M. P.; Janes, M. R.; Li, L. S.; Hansen, R.; Peters,
U.; Kessler, L. V.; Chen, Y.; Kucharski, J. M.; Feng, J.; Ely, T.; Chen,
J. H.; Firdaus, S. J.; Babbar, A.; Ren, P.; Liu, Y., Selective Inhibition
of Oncogenic KRAS Output with Small Molecules Targeting the Inac-
tive State. Cancer Discovery 2016, 6 (3), 316-29.
13.
(a) Qian, Y.; Weerapana, E., A Quantitative Mass-Spec-
trometry Platform to Monitor Changes in Cysteine Reactivity. Methods
Mol. Biol. 2017, 1491, 11-22; (b) Weerapana, E.; Wang, C.; Simon, G.
M.; Richter, F.; Khare, S.; Dillon, M. B.; Bachovchin, D. A.; Mowen,
K.; Baker, D.; Cravatt, B. F., Quantitative reactivity profiling predicts
functional cysteines in proteomes. Nature 2010, 468 (7325), 790-5.
27.
Zanon, P. R. A.; Lewald, L.; Hacker, S. M., Isotopically La-
beled Desthiobiotin Azide (isoDTB) Tags Enable Global Profiling of
the Bacterial Cysteinome. Angew. Chem. Int. Ed. Engl. 2019.
28.
Bianco, G.; Yamashita, Y.; Crowley, V. M.; Remillard, D.; Lum, K.
M.; Simon, G. M.; Kemper, E. K.; Lazear, M. R.; Yin, S.; Blewett, M.
M.; Dix, M. M.; Nguyen, N.; Shokhirev, M. N.; Chin, E.; Lairson, L.;
Forli, S.; Teijaro, J. R.; Cravatt, B. F., An activity-guided map of elec-
trophile-cysteine interactions in primary human immune cells. bioRxiv
2019, 808113.
Vinogradova, E. V.; Lazar, D. C.; Suciu, R. M.; Wang, Y.;
14.
(a) Weerapana, E.; Speers, A. E.; Cravatt, B. F., Tandem or-
thogonal proteolysis-activity-based protein profiling (TOP-ABPP)--a
general method for mapping sites of probe modification in proteomes.
Nat. Protoc. 2007, 2 (6), 1414-25; (b) Speers, A. E.; Cravatt, B. F., A
tandem orthogonal proteolysis strategy for high-content chemical pro-
teomics. J. Am. Chem. Soc. 2005, 127 (28), 10018-9.
29.
Abo, M.; Bak, D. W.; Weerapana, E., Optimization of Caged
15.
Zhou, Y.; Wynia-Smith, S. L.; Couvertier, S. M.; Kalous, K.
Electrophiles for Improved Monitoring of Cysteine Reactivity in Liv-
ing Cells. ChemBioChem 2017, 18 (1), 81-84.
30.
Waser, J.; Adibekian, A., Proteome-Wide Profiling of Targets of Cys-
teine reactive Small Molecules by Using Ethynyl Benziodoxolone Re-
agents. Angew. Chem. Int. Ed. Engl. 2015, 54 (37), 10852-7.
S.; Marletta, M. A.; Smith, B. C.; Weerapana, E., Chemoproteomic
Strategy to Quantitatively Monitor Transnitrosation Uncovers Func-
tionally Relevant S-Nitrosation Sites on Cathepsin D and HADH2. Cell
Chem. Biol. 2016, 23 (6), 727-37.
Abegg, D.; Frei, R.; Cerato, L.; Prasad Hari, D.; Wang, C.;
16.
Backus, K. M.; Correia, B. E.; Lum, K. M.; Forli, S.; Horn-
ing, B. D.; Gonzalez-Paez, G. E.; Chatterjee, S.; Lanning, B. R.; Tei-
jaro, J. R.; Olson, A. J.; Wolan, D. W.; Cravatt, B. F., Proteome-wide
covalent ligand discovery in native biological systems. Nature 2016,
534 (7608), 570-4.
31.
Baldwin, A. D.; Kiick, K. L., Tunable degradation of malei-
mide-thiol adducts in reducing environments. Bioconjugate Chem.
2011, 22 (10), 1946-53.
32.
Matsui, S.; Aida, H., Hydrolysis of some N-alkylmalei-
mides. J. Chem. Soc., Perkin Trans. 2 1978, (12), 1277-1280.
ACS Paragon Plus Environment