Paper
Organic & Biomolecular Chemistry
J. Med. Chem., 2003, 46, 4910–4925; (c) P. M. Chandrika,
T. Yakaiah, A. R. Rao, B. Narsaiah, N. C. Reddy, V. Sridhar
and J. V. Rao, Eur. J. Med. Chem., 2008, 43, 846–852;
(d) V. Chandregowda, A. K. Kush and G. Chandrasekara
Reddy, Eur. J. Med. Chem., 2009, 44, 3046–3055.
7 (a) D. J. Connolly, D. Cusack, T. P. O’Sullivan and
P. J. Guiry, Tetrahedron, 2005, 61, 10153–10202; (b) L. He,
H. Li, J. Chen and X.-F. Wu, RSC Adv., 2014, 4, 12065–
12077.
Conclusions
In summary, we have developed an efficient synthetic method
for the synthesis of 2-aryl quinazolinones from unreactive
methyl arenes via an iron-catalyzed CDC reaction. During the
reaction, C–H bond activation on a benzylic sp3 carbon occurs
in the presence of DTBP, and the annulated product is
obtained followed by dual amination with anthranilamides 1
with the assistance of an iron catalyst. The reaction was per-
formed under air, and we found that oxygen gas plays a crucial
role in the oxidative process of the reaction. Compared with
the previous CDC conditions, our conditions improved the
yields with most substrates and provided a broad substrate
scope to obtain various N-heterocycles. The developed method
also tolerates various functional groups allowing further
functionalization. And all of the reagents and catalysts used
are inexpensive and readily available. Based on the results and
control experiments, we suggested a possible radical mecha-
nism, with benzaldehyde as a key intermediate. Further exten-
sion of this methodology to access other types of
N-heterocycles is under investigation in our research group.
8 (a) T. Hisano, M. Ichikawa, A. Nakagawa and M. Tsuji,
Chem.
Pharm.
Bull.,
1975,
23,
1910–1916;
(b) A. V. Purandare, A. Gao, H. Wan, J. Somerville, C. Burke,
C. Seachord, W. Vaccaro, J. Wityak and M. A. Poss, Bioorg.
Med. Chem. Lett., 2005, 15, 2669–2672; (c) T. M. Potewar,
R. N. Nadaf, T. Daniel, R. J. Lahoti and K. V. Srinivasan,
Synth. Commun., 2005, 35, 231–241; (d) Y. Mitobe, S. Ito,
T. Mizutani, T. Nagase, N. Sato and S. Tokita, Bioorg. Med.
Chem. Lett., 2009, 19, 4075–4078; (e) C. Balakumar,
P. Lamba, D. P. Kishore, B. L. Narayana, K. V. Rao,
K. Rajwinder, A. R. Rao, B. Shireesha and B. Narsaiah,
Eur. J. Med. Chem., 2010, 45, 4904–4913; (f) N. Y. Kim and
C.-H. Cheon, Tetrahedron Lett., 2014, 55, 2340–2344.
9 (a) J. Zhou and J. Fang, J. Org. Chem., 2011, 76, 7730–7736;
(b) H. Hikawa, Y. Ino, H. Suzuki and Y. Yokoyama, J. Org.
Chem., 2012, 77, 7046–7051; (c) A. J. Watson, A. C. Maxwell
and J. M. Williams, Org. Biomol. Chem., 2012, 10, 240–243;
(d) W. Ge, X. Zhu and Y. Wei, RSC Adv., 2013, 3, 10817–
10822; (e) S. M. A. Hakim Siddiki, K. Kon, A. S. Touchy and
K.-I. Shimizu, Catal. Sci. Technol., 2014, 4, 1716–1719;
(f) M. Sharif, J. Opalach, P. Langer, M. Beller and X.-F. Wu,
RSC Adv., 2014, 4, 8–17; (g) D. Zhao, Y.-R. Zhou, Q. Shen
and J.-X. Li, RSC Adv., 2014, 4, 6486–6489; (h) F. Li, L. Lu
and P. Liu, Org. Lett., 2016, 18, 2580–2583; (i) Y. Hu,
L. Chen and B. Li, RSC Adv., 2016, 6, 65196–65204;
( j) A. Dandia, R. Sharma, A. Indora and V. Parewa,
ChemistrySelect, 2018, 3, 8285–8290.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korean government
(2018R1C1B6005607 and 2018R1A4A1021703) and the
Creative-Pioneering Researchers Program through Seoul
National University (SNU).
10 T. B. Nguyen, L. Ermolenko and A. Al-Mourabit, Green
Chem., 2013, 15, 2713–2717.
Notes and references
1 S. B. Mhaske and N. P. Argade, Tetrahedron, 2006, 62, 9787– 11 Q. Zeng, H. Wei, T. Li, Y. Zhou and L. Zhou, Synthesis,
9826. 2013, 3349–3354.
2 (a) M.-J. Hour, L.-J. Huang, S.-C. Kuo, Y. Xia, K. Bastow, 12 (a) X. F. Wu, L. He, H. Neumann and M. Beller, Chem. –
Y. Nakanishi, E. Hamel and K.-H. Lee, J. Med. Chem., 2000,
43, 4479–4487; (b) E. A. Henderson, V. Bavetsias,
D. S. Theti, S. C. Wilson, R. Clauss and A. L. Jackman,
Bioorg. Med. Chem., 2006, 14, 5020–5042.
3 V. Alagarsamy and U. S. Pathak, Bioorg. Med. Chem., 2007,
15, 3457–3462.
Eur. J., 2013, 19, 12635–12638; (b) H. Li, L. He,
H. Neumann, M. Beller and X. F. Wu, Green Chem., 2014,
16, 1336–1343; (c) X. Jiang, T. Tang, J.-M. Wang, Z. Chen,
Y.-M. Zhu and S.-J. Ji, J. Org. Chem., 2014, 79, 5082–5087;
(d) S. You, B. Huang, T. Yan and M. Cai, J. Organomet.
Chem., 2018, 875, 35–45; (e) S. Ram, Shaifali,
A. S. Chauhan, Sheetal, A. K. Sharma and P. Das, Chem. –
Eur. J., 2019, 25, 14506–14511.
4 V. Alagarsamy, V. R. Solomon and K. Dhanabal, Bioorg.
Med. Chem., 2007, 15, 235–241.
5 H. Kikuchi, K. Yamamoto, S. Horoiwa, S. Hirai, 13 (a) C.-J. Li, Acc. Chem. Res., 2009, 42, 335–344;
R. Kasahara, N. Hariguchi, M. Matsumoto and Y. Oshima,
J. Med. Chem., 2006, 49, 4698–4706.
6 (a) Y. Takase, T. Saeki, N. Watanabe, H. Adachi, S. Souda
and I. Saito, J. Med. Chem., 1994, 37, 2106–2111;
(b) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111,
1215–1292; (c) M. K. Lakshman and P. K. Vuram, Chem.
Sci., 2017, 8, 5845–5888; (d) C. Y. Huang, H. Kang, J. Li and
C. J. Li, J. Org. Chem., 2019, 84, 12705–12721.
(b) K. Matsuno, J. Ushiki, T. Seishi, M. Ichimura, 14 D. Zhao, T. Wang and J. X. Li, Chem. Commun., 2014, 50,
N. A. Giese, J.-C. Yu, S. Takahashi, S. Oda and Y. Nomoto,
6471–6474.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2020