Organic Letters
Letter
2006, 2006, 1391−1401. (d) Denmark, S. E.; Beutner, G. L. Angew.
Chem., Int. Ed. 2008, 47, 1560−1638.
AUTHOR INFORMATION
■
Corresponding Author
Notes
(11) Cheng, C.; Brookhart, M. Angew. Chem., Int. Ed. 2012, 51, 9422−
9424.
(12) (a) Parks, D. J.; Blackwell, J. M.; Piers, W. E. J. Org. Chem. 2000,
65, 3090−3098. (c) Igarashi, M.; Mizuno, R.; Fuchikami, T. Tetrahedron
Lett. 2001, 42, 2149−2151. (d) Nakanishi, J.; Tatamidani, H.;
Fukumoto, Y.; Chatani, N. Synlett 2006, 2006, 869−872.
The authors declare no competing financial interest.
(13) (a) Wright, A.; West, R. J. Am. Chem. Soc. 1974, 96, 3214−3222.
(b) Corriu, R. J. P.; Perz, R.; Reye, C. Tetrahedron 1983, 39, 999−1009.
(c) Danheiser, R. L.; Fink, D. M.; Okano, K.; Tsai, Y. M.; Szczepanski, S.
W. J. Org. Chem. 1985, 50, 5393−5396. (d) Linderman, R. J.; Ghannam,
A. J. Am. Chem. Soc. 1990, 112, 2392−2398. (e) Chuit, C.; Corriu, R. J.
P.; Reye, C.; Young, J. C. Chem. Rev. 1993, 93, 1371−1448. (f) Fleming,
I.; Ghosh, U. J. Chem. Soc., Perkin Trans. 1 1994, 257−262. (g) Kira, M.;
Zhang, L. C. Hypercoordinate Silicon Species in Organic Syntheses. In
Chemistry of Hypervalent Compounds; Akiba, K., Ed.; Wiley: New York,
1999; pp 147−169. (h) Rendler, S.; Oestreich, M. Synthesis 2005, 2005,
1727−1747.
ACKNOWLEDGMENTS
■
We thank UT Arlington start-up fund for support of our
program, ACS Petroleum Research Fund (PRF# 54831-DNI1),
and NSF (CHE-0234811 and CHE-0840509).
REFERENCES
■
(1) Mukaiyama, T.; Ohshima, M.; Miyoshi, N. Chem. Lett. 1987,
1121−1124.
(2) (a) Tietze, L. F.; Dolle, A.; Schiemann, K. Angew. Chem., Int. Ed.
̈
Engl. 1992, 31, 1372−1373. (b) Tietze, L. F.; Schiemann, K.; Wegner, C.
J. Am. Chem. Soc. 1995, 117, 5851−5852. (c) Tietze, L. F.; Wulff, C.;
Wegner, C.; Schuffenhauer, A.; Schiemann, K. J. Am. Chem. Soc. 1998,
120, 4276−4780.
(14) Heteroatom-bonded acyclic hydridobisimidazolium pentacoordi-
nate silicate salts {i.e., [Nu22+Si−Me2H]X− (Nu = 3-methyl-1-
imidazolio, N,N-dimethylaminopyridinio, pyridinio; X = Cl, I,
OSO2CF3)} were characterized via 28Si NMR spectroscopy.
(15) Hydrosilylation of differently substituted esters has been studied.
(a) See ref 11. (b) Hua, Y.; Asgari, P.; Dakarapu, U. S.; Jeon, J. Chem.
Commun. 2015, 51, 3778−3781. (c) Hua, Y.; Jung, S.; Roh, J.; Jeon, J. J.
Org. Chem. 2015, 80, 4661−4671.
(3) (a) Maeda, K.; Shinokubo, H.; Oshima, K. J. Org. Chem. 1997, 62,
6429−6431. (b) Fujita, K.; Inoue, A.; Shinokubo, H.; Oshima, K. Org.
Lett. 1999, 1, 917−919. (c) Shinokubo, H.; Oshima, K.; Utimoto, K.
Bull. Chem. Soc. Jpn. 1997, 70, 2255−2263. (d) Shinokubo, H.; Oshima,
K.; Utimoto, K. Chem. Lett. 1995, 461−462.
(4) Synthetic applications of N,O-silyl acetals: (a) Motoyama, Y.; Aoki,
M.; Takaoka, N.; Aoto, R.; Nagashima, H. Chem. Commun. 2009, 1574−
1576. (b) Gregory, A. W.; Chambers, A.; Hawkins, A.; Jakubec, P.;
Dixon, D. J. Chem. - Eur. J. 2015, 21, 111−114. (c) Nakajima, M.; Sato,
T.; Chida, N. Org. Lett. 2015, 17, 1696−1699.
(5) (a) Takacs, J. M.; Helle, M. A.; Seely, F. L. Tetrahedron Lett. 1986,
27, 1257−1260. (b) Thenappan, A.; Burton, D. J. J. Org. Chem. 1990, 55,
4639−4642. (c) Hoye, T. R.; Kopel, L. C.; Ryba, T. D. Synthesis 2006,
2006, 1572−1574.
(6) Methods for the interception of reductively generated aluminum
tetrahedral intermediates: (a) Marshall, J. A.; Audia, J. E.; Grote, J.;
Shearer, B. G. Tetrahedron 1986, 42, 2893−2902. (b) Kiyooka, S.;
Shirouchi, M. J. Org. Chem. 1992, 57, 1−2. (c) Polt, R.; Peterson, M. A.;
DeYoung, L. J. Org. Chem. 1992, 57, 5469−5480. (d) Haddad, M.;
Imogai, H.; Larcheveque, M. J. Org. Chem. 1998, 63, 5680−5683.
(e) Razavi, H.; Polt, R. J. Org. Chem. 2000, 65, 5693−5706. (f) Yamazaki,
T.; Kobayashi, R.; Kitazume, T.; Kubota, T. J. Org. Chem. 2006, 71,
2499−2502. (g) Cook, G. R.; Xu, W. Heterocycles 2006, 67, 215−232.
(7) Examples of single-pot catalytic oxidative olefination of alcohols:
(a) Black, P. J.; Edwards, M. G.; Williams, J. M. J. Eur. J. Org. Chem. 2006,
2006, 4367−4378. (b) Vatele, J. M. Tetrahedron Lett. 2006, 47, 715−
718. (c) Hall, M. I.; Pridmore, S. J.; Williams, J. M. J. Adv. Synth. Catal.
2008, 350, 1975−1978. (d) Lee, E. Y.; Kim, Y.; Lee, J. S.; Park, J. Eur. J.
Org. Chem. 2009, 2009, 2943−2946. (e) Davi, M.; Lebel, H. Org. Lett.
2009, 11, 41−44. (f) Kona, J. R.; King’ondu, C. K.; Howell, A. R.; Suib,
S. L. ChemCatChem 2014, 6, 749−752. (g) Srimani, D.; Leitus, G.; Ben-
David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2014, 53, 11092−11095.
(h) Li, L.; Herzon, S. B. Nat. Chem. 2014, 6, 22−27. (i) Mura, M. G.; De
Luca, L.; Taddei, M.; Williams, J. M. J.; Porcheddu, A. Org. Lett. 2014,
16, 2586−2589. (j) Khaskin, E.; Milstein, D. Chem. Commun. 2015, 51,
9002−9005.
(16) Formation of the methyl ester via trans-esterification (<3%) and
saturated byproduct (<1%) was observed over an extended period of
reaction time.
(17) When 3a was treated with KOSiMe3 in the absence of external
reducing agents (e.g., diethylsilane) and pronucleophile (e.g., trimethyl
phosphonoacetate), a carbonyl hydrosilylation adduct (99%) was
exclusively produced. One possible explanation is that the fully
dissociated aldehyde 8a reacts with disiloxane 7 (R3 = Et). However,
during our studies on the reductive HWE olefination, we did not observe
the formation of the hydrosilylation adduct. (a) Sonnek, G.; Drahs, E.;
Jancke, H.; Hamann, H. J. Organomet. Chem. 1990, 386, 29−35.
(b) Chuit, C.; Corriu, R. J. P.; Perz, R.; Reye, C. Synthesis 1982, 1982,
981−984. (c) Schiffers, R.; Kagan, H. B. Synlett 1997, 1997, 1175.
(d) Mori, A.; Takahisa, E.; Kajiro, H.; Hirabayashi, K.; Nishihara, Y.;
Hiyama, T. Chem. Lett. 1998, 443−444.
(18) General procedure: (i) [Ir(coe)2Cl]2 (0.9 mg, 0.1 mol %) and 4 (1
mmol) were added to a flame-dried, nitrogen-purged septum-capped
vial. The mixture was dissolved with CH2Cl2 (0.30 mL, 3.3 M), and
H2SiEt2 (0.26 mL, 2 mmol) was added to the mixture. The septum on
the vial was replaced by a screw cap with a Teflon liner under a N2
atmosphere [note: diethylsilane (bp 56 °C and density 0.686 g/mL) is
volatile]. The reaction mixture was stirred at rt for 8 h. Volatiles were
removed in vacuo to afford the diethylhydrosilyl acetals, which were
directly used for subsequent reactions without further purification. (ii)
Crude silyl acetals were dissolved in THF (6.30 mL, 0.16 M), and alkyl
phosphonoacetate (1.1 mmol) and KOSiMe3 (128.3 mg, 1 mmol) in
THF (6.30 mL, 0.16 M) were added at rt [in the instance of aliphatic
enoate-derived silyl acetals, KOSiMe3 was added at 0 °C]. After being
stirred for 30 min, the reaction mixture was quenched with saturated aq
NH4Cl and extracted with diethyl ether. The combined organic extracts
were washed with brine and dried over anhydrous Na2SO4, filtered, and
concentrated in vacuo. The crude product was purified by MPLC to
afford the corresponding enoates 5.
(8) (a) Trost, B. M.; Papillon, J. P. N.; Nussbaumer, T. J. Am. Chem.
Soc. 2005, 127, 17921−17937. (b) Gholap, S. L.; Woo, C. M.;
Ravikumar, P. C.; Herzon, S. B. Org. Lett. 2009, 11, 4322−4325.
(9) (a) Chae, M. J.; Jeon, A. R.; Livinghouse, T.; An, D. K. Chem.
Commun. 2011, 47, 3281−3283. (b) Kim, M. S.; Choi, Y. M. An, D. K.
Tetrahedron Lett. 2007, 48, 5061−5064. (c) Song, J. I.; An, D. K. Chem.
Lett. 2007, 36, 886−887. (d) Chae, M. J.; Song, J. I.; An, D. K. Bull.
Korean Chem. Soc. 2007, 28, 2517−2518.
(19) (a) Ojima, I.; Kogure, I. Organometallics 1982, 1, 1390−1399.
(b) Menozzi, C.; Dalko, P. I.; Cossy, J. Synlett 2005, 2449−2452.
(20) Marshall, J. A.; Yanik, M. M. J. Org. Chem. 2001, 66, 1373.
(21) Ando, K. J. Org. Chem. 1997, 62, 1934−1939.
(10) (a) Furin, G. G.; Vyazankina, G. A.; Gostevsky, B. A.; Vyazankin,
N. S. Tetrahedron 1988, 44, 2675−2749. (b) Rendler, S.; Oestreich, M.
Synthesis 2005, 2005, 1727−1747. (c) Orito, Y.; Nakajima, N. Synthesis
D
Org. Lett. XXXX, XXX, XXX−XXX