Exceptional Chelating Ability of Me2AlCl and MeAlCl2
J. Am. Chem. Soc., Vol. 123, No. 44, 2001 10841
chelates derived from syn and anti aldehyde diastereomers,
respectively. This stereochemical issue has not been systemati-
cally explored particularly in comparison with the corresponding
reactions under nonchelating conditions.6 This investigation is
intended as a companion to our earlier study in this area where
it was documented that the two stereocenters in syn aldehyde
A are nonreinforcing in carbonyl additions promoted by
nonchelating Lewis acids while the two stereocenters in anti
aldehyde B are reinforcing.7
Background
The analysis of carbonyl π-facial selectivity has attracted
immense interest since Cram’s pioneering studies on the
stereoselective addition of organometallic reagents to chiral
acyclic carbonyl substrates bearing vicinal alkyl and heteroatom
substituents.8 In his series of investigations, “open-chain” and
“chelation” transition state models were proposed to account
for stereoselective nucleophilic carbonyl addition reactions to
these families of substrates, respectively. While Cram’s models
for stereoinduction followed from the results of organometallic
addition reactions, these transition state models through their
modern refinements (Felkin-Anh)9 have been applied to the
broader field of Lewis acid-mediated carbonyl addition pro-
cesses.10 Carbonyl substrates such as A and B (eqs 3and 4) that
exhibit the potential for chelation-controlled addition1,11 are of
particular interest in this investigation. However, such substrates,
while exhibiting the potential for chelate control, may react
through either “open-chain” (Felkin) or “chelated” transition
states. In substrates such as R-alkoxy carbonyl derivatives, the
consequence of either Felkin monodentate (eq 5) or chelate
carbonyl activation (eq 6) has a direct bearing on the stereo-
chemical outcome of the reaction. In fact, the stereochemical
outcome of this reaction provides strong circumstantial evidence
of the mode of carbonyl activation.12
allylstannanes to R-alkoxy aldehydes (eqs 7 and 8).14 In the cited
examples, the impact of the oxygen protecting group on the
mode of substrate activation is illustrated. This and related cases
provide additional evidence that hindered silyl ethers do not
generally participate in chelate organization.
â-Chelation: 1,2-Induction. The currently embraced Felkin-
Anh model8d,e and the chelate-controlled addition model are
illustrated in Scheme 1 for R-methyl â-alkoxy aldehydes 1 and
2 (eqs 9 and 10). As with R-alkoxy aldehydes, the two control
elements lead to different product diastereomers. It has been
well precedented that metal ion chelation between the carbonyl
and â-oxygen substituent provides a conformationally con-
strained six-membered ring having sterically differentiated
diastereofaces (eq 10). Observation of Lewis acid-substrate
complexation by NMR spectroscopy suggests that the favored
chelate conformation positions the R-alkyl substituent in the
pseudoequatorial position of the chair conformer.16 Addition of
the nucleophile to the anti-Felkin17 diastereoface opposite the
R-alkyl group affords the 1,2-anti OH-Me relationship in the
adduct.18 The NMR study not withstanding, both half-chair and
boat transition state chelate geometries rationalize the sense of
asymmetric induction (eq 10).
A number of factors are responsible for determining which
mode of Lewis acid-substrate activation might be anticipated.
Such factors include the nature of the coordinating Lewis acid
(BF3‚OEt2 vs TiCl4) and the nature of the oxygen protecting
group, P (Bn vs t-BuMe2Si),13,14 and the reaction solvent (CH2-
Cl2 vs THF).15 The impact of many of these variables has been
highlighted by Keck in his study of the catalyzed addition of
(6) For a brief report on organocuprate additions, see: Still, W. C.;
Schneider, J. A. Tetrahedron Lett. 1980, 21, 1035-1038.
(7) Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. J. J. Am. Chem.
Soc. 1996, 118, 4322-4343.
(8) (a) Cram D. J.; Abd Elhafez, F. A J. Am. Chem. Soc. 1952, 74, 5828-
5835. (b) Cram, D. J.; Kopecky, K. R. J. Am. Chem. Soc. 1959, 81, 2748-
2755. (c) Cram, D. J.; Leitereg, T. H. J. Am. Chem. Soc. 1968, 90, 4019-
4026.
(9) Several “open chain” models have been presented since Cram: (a)
Cornforth, J. W.; Cornforth, R. H.; Mathew, K. K. J. Chem. Soc. 1959,
112-127. (b) Karabatsos, G. J. J. Am. Chem. Soc. 1967, 89, 1367-1371.
(c) Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 2199-
2204. (d) Anh, N. T.; Eisenstein, O. NouV. J. Chem. 1977, 1, 61-70. (e)
Anh, N. T. Top. Curr. Chem. 1980, 88, 145-162. (f) For an excellent review
of Cram’s rule see ref 1a.
(10) For reviews of Lewis acid-promoted reactions, see: (a) Enolsi-
lanes: Gennari, C. In ComprehensiVe Organic Synthesis: Additions to C-X
π-Bonds Part 2; Trost, B. M., Fleming, I., Heathcock, C. H., Eds.; Pergamon
Press: New York 1991; Chapter 2.4. (b) Allylsilanes and allylstannanes:
Fleming, I. In ComprehensiVe Organic Synthesis: Additions to C-X
π-Bonds Part 2; Trost, B. M., Fleming, I., Heathcock, C. H., Eds.; Pergamon
Press: New York 1991; Chapter 2.2.
(13) (a) Overman, L. E.; McCready, R. J. Tetrahedron Lett. 1982, 23,
2355-2358. (b) Keck, G. E.; Castellino, S.; Wiley, M. R. J. Org. Chem.
1986, 51, 5478-5480. (c) Keck, G. E.; Andrus, M. B.; Castellino, S. J.
Am. Chem. Soc. 1989, 111, 8136-8141. (d) Reetz, M. T.; Hu¨llmann, M. J.
Chem. Soc., Chem. Commun. 1986, 1600-1602. (e) Bloch, R.; Gilbert, L.;
Girard, C. Tetrahedron Lett. 1988, 29, 1021-1024. (f) Keck, G. E.; Palani,
A.; McHardy, S. F. J. Org. Chem. 1994, 59, 3113-3122. (g) Crimmins,
M. T.; Rafferty, S. W. Tetrahedron Lett. 1996, 37, 5649-5652. (h) Frye,
S. V.; Eliel, E. L. Tetrahedron Lett. 1986, 28, 3223-3226. (i) Frye, S. V.;
Eliel, E. L. J. Am. Chem. Soc. 1988, 110, 484-489. (j) Ukaji, Y.; Kanda,
H.; Yamamoto, K.; Fujisawa, T. Chem. Lett. 1990, 597-600. For evidence
supporting chelation of an OTBS group, see: (k) Chen, X.; Hortelano, R.
R.; Eliel, E. L.; Frye, S. V. J. Am. Chem. Soc. 1992, 114, 1778-1784. (l)
Williard, M. J.; Hintze, M. J. J. Am. Chem. Soc. 1987, 109, 5539-5541.
(14) (a) Sujishi, S.; Witz, S. J. Am. Chem. Soc. 1954, 76, 4631-4636.
(b) Shea, K. J.; Gobeille, R.; Bramblett, J.; Thompson, E. J. Am. Chem.
Soc. 1978, 100, 1611-1613. (c) West, R.; Wilson, L. S.; Powell, D. L. J.
Organomet. Chem. 1979, 178, 5-9. (d) Kahn, S. D.; Keck, G. E.; Hehre,
W. J. Tetrahedron Lett. 1987, 28, 279-280. (e) Shambayati, S.; Blake, J.
F.; Wierschke, S. G.; Jorgensen, W. J.; Schreiber, S. L. J. Am. Chem. Soc.
1990, 112, 697-703.
(11) (a) Eliel E. L. In Asymmetric Synthesis; Morrison, J. D., Ed.;
Academic Press: New York, 1983; Vol. 2, Chapter 5, pp 125-155. (b)
Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1984, 23, 556-569. (c) Reference
1. (d) Heathcock, C. H.; Kiyooka, S.; Blumenkopf, T. A. J. Org. Chem.
1984, 49, 4214-4223.
(12) For the first direct evidence for chelate control see: Reetz, M.;
Hu¨llmann, M.; Seitz, T. Angew. Chem., Int. Ed. Engl. 1987, 26, 477-479.
(15) Keck, G. E.; Boden, E. P. Tetrahedron Lett. 1984, 25, 265-268.
(16) Keck, G. E.; Castellino, S. J. Am. Chem. Soc. 1986, 108, 3847-
3849.