Scheme 2 Reagents and conditions: (i) Na (6 g atom equiv.), t-BuOH (14 mol equiv.), THF, 66 ЊC, 3 h; (ii) Hg(OAc)2 (2 mol equiv.), 1 : 1 v/v
THF–H2O, 25 ЊC, 24 h then NaBH4 (2 mol equiv.), 3 M aq. NaOH, 25 ЊC, 0.5 h; (iii) (CH2O)n (10 mol equiv.), HCO2H, 80 ЊC, 18 h then K2CO3
(6 mol equiv.), MeOH, 25 ЊC, 1 h; (iv) BCl3 (5 mol equiv.), CH2Cl2, 0 ЊC, 0.25 h.
(d, J 16.6 Hz, 1H), 3.64 (m, 1H), 3.47 (m, 1H), 3.11 (dd, J 12.0 and 5.1
Hz, 1H), 2.93 (m, 1H), 2.45 (dt, J 13.8 and 3.3 Hz, 1H), 2.31 (m, 1H),
2.24 (m, 1H), 2.03 (m, 1H), 1.84–1.74 (complex m, 2H), 1.60 (m, 1H),
1.35 (app. q, J 12.0 Hz, 1H), signals due to hydroxy group protons not
observed; 13C NMR (150 MHz, CD3OD) δ 148.5 (C), 146.8 (C), 138.3
(C), 122.2 (C), 114.0 (CH), 107.7 (CH), 68.9 (CH), 68.2 (CH), 60.9
(CH2), 56.5 (CH3), 52.6 (CH2), 43.7 (C), 37.3 (CH2), 36.0 (CH2), 31.3
(CH2), 27.1 (CH2); IR (neat, NaCl plates) 3306, 2920, 1562, 1509, 1447,
1277, 1128, 1071, 1029 cmϪ1; MS (EI) m/z 275.1519 (C16H21NO3
(MgSO4), filtered and concentrated under reduced pressure to
afford a pale-yellow oil. Subjection of this material to flash
chromatography (1 : 4 v/v ethyl acetate–hexane elution) gave,
after concentration of the appropriate fractions (Rf1 0.3), the
carbamate 14 (60 mg, 72%) as a clear, colorless oil. H NMR
(300 MHz, CDCl3) δ 6.84 (s, 1H), 6.83 (s, 2H), 5.91 (m, 1H),
4.92 (broad m, 1H), 4.50 (septet, J 6.1 Hz, 1H), 3.85 (s, 3H),
3.38–3.02 (complex m, 2H), 2.40–1.80 (complex m, 6H), 1.42
(broad s, 9H), 1.35 (d, J 6.1 Hz, 6H); 13C NMR (75 MHz,
CDCl3) δ 155.4 (C), 150.1 (C), 145.8 (C), 138.4 (C), 133.6 (C),
125.6 (CH), 117.8 (CH), 115.5 (CH), 109.9 (CH), 79.6 (C), 71.3
(CH), 56.0 (CH3), 49.7 (C), 43.7 (CH2), 31.3 (CH2), 28.4 (CH3),
23.3 (CH2), 22.1 (CH3), two signals obscured or overlapping; IR
requires 275.1521, Mϩ , 100%), 258 (18), 247 (16), 246 (21), 228 (16),
ؒ
204 (39), 203 (37), 202 (18), 187 (19), 79 (46).
1 S. F. Martin, in The Alkaloids, ed. A. Brossi, Academic Press,
New York, 1987; vol. 30, pp. 251–376.
2 J. R. Lewis, Nat. Prod. Rep., 1998, 15, 107.
3 M. A. Schwartz and R. A. Holton, J. Am. Chem. Soc., 1970, 92,
1090.
4 (a) H. Irie, S. Uyeo and A. Yoshitake, J. Chem. Soc. C, 1968, 1802;
(b) T. Fushimi, H. Ikuta, H. Irie, K. Nakadachi and S. Uyeo,
Heterocycles, 1979, 12, 1311; (c) I. H. Sánchez, F. J. López, J. J.
Soria, M. I. Larraza and H. J. Flores, J. Am. Chem. Soc., 1983, 105,
7640.
(KBr) 2975, 2931, 1693, 1517, 1389, 1262, 1174, 1111 cmϪ1; MS
(EI) m/z 421.2019 (C23H32 35ClNO4 requires 421.2020, Mϩ
,
ؒ
65%), 367 (6), 365 (18), 325 (39), 323 (71), 288 (23), 235 (53), 57
(100).
Acknowledgements
5 S. V. Ley, O. Schucht, A. W. Thomas and P. J. Murray, J. Chem. Soc.,
Perkin Trans. 1, 1999, 1251.
We thank the Institute of Advanced Studies for financial
support including the provision of an IAS post-Doctoral
Fellowship to KAJ and a PhD Scholarship to JEH.
6 For representative examples see (a) H. Muxfeldt, R. S. Schneider
and J. B. Mooberry, J. Am. Chem. Soc., 1966, 88, 3670; (b) H. W.
Whitlock Jr. and G. L. Smith, J. Am. Chem. Soc., 1967, 89, 3600;
(c) R. V. Stevens, Acc. Chem. Res., 1977, 10, 193; (d ) J. B. P. A.
Wijnberg and W. N. Speckamp, Tetrahedron, 1978, 34, 2579;
(e) G. E. Keck and R. R. Webb II, J. Org. Chem., 1982, 47,
1302; ( f ) I. H. Sánchez, F. J. López, H. J. Flores and M. I.
Larraza, Heterocycles, 1983, 20, 247; (g) O. Hoshino, S. Sawaki,
N. Shimamura, A. Onodera and B. Umezawa, Chem. Pharm. Bull.,
1987, 35, 2734; (h) S. F. Martin and C. L. Campbell, J. Org. Chem.,
1988, 53, 3184; (i) J. P. Michael, A. S. Howard, R. B. Katz and
M. I. Zwane, Tetrahedron Lett., 1992, 33, 6023; (j) R. M. Burk
and L. E. Overman, Heterocycles, 1993, 35, 205; (k) W. H. Pearson
and F. E. Lovering, J. Org. Chem., 1998, 63, 3607; (l ) A. Padwa,
M. A. Brodney, M. Dimitroff, B. Liu and T. Wu, J. Org. Chem.,
2001, 66, 3119.
7 See, for example (a) M. Banwell, A. Edwards, J. Harvey, D. Hockless
and A. Willis, J. Chem. Soc., Perkin Trans. 1, 2000, 2175; (b) M. G.
Banwell, J. E. Harvey, D. C. R. Hockless and A. W. Wu, J. Org.
Chem., 2000, 65, 4241.
8 V. Pabuccuoglu, P. Richomme, T. Gozler, B. Kivcak, A. J. Freyer and
M. Shamma, J. Nat. Prod., 1989, 52, 785.
9 The crinine alkaloids 8-O-demethylmaritidine (M. Kihara, T. Koike,
Y. Imakura, K. Kida, T. Shingu and S. Kobayasi, Chem. Pharm.
Bull., 1987, 35, 1070), siculine,8 narcidine (E. Tojo, J. Nat. Prod.,
1991, 54, 1387), 8-hydroxy-9-methoxycrinine (B. Sener, S. Könükol,
C. Kruk and U. K. Pandit, Nat. Prod. Lett., 1993, 1, 287) and
macowine (J. J. Nair, A. K. Machocho, W. E. Campbell, R. Brun,
F. Viladomat, C. Codina and J. Bastida, Phytochemistry, 2000, 54,
Notes and references
† All new and stable compounds had spectroscopic data [IR, NMR,
mass spectrum] consistent with the assigned structure. Satisfactory
combustion and/or high-resolution mass spectral analytical data were
obtained for new compounds and/or suitable derivatives.
‡ The major and chromatographically more mobile epimer 13a is
tentatively assigned as possessing an anti-relationship between the
cyclopropyl and aryl rings. This epimer leads, via hydrogenation and
carbamate formation, to compound 3a.
1
§ Selected spectral data for compound 1: H NMR (500 MHz, CDCl3)
δ 6.72 (s, 1H), 6.57 (s, 1H), 4.47 (d, J 16.5 Hz, 1H), 4.28 (m, 1H), 3.88
(s, 3H), 3.87 (d, J 16.5 Hz, 1H), 3.53 (m, 1H), 3.47 (dd, J 12.5 and
5.5 Hz, 1H), 2.94 (ddd, J 12.5, 9.0 and 7.0 Hz, 1H), 2.28 (m, 1H), 2.25–
2.10 (complex m, 3H), 1.92–1.73 (complex m, 3H), 1.35 (ddd, J 12.5,
12.0 and 2.5 Hz, 1H), signals due to hydroxy group protons not
observed; 13C NMR (125 MHz, CD3OD) δ 147.1 (C), 145.3 (C), 138.1
(C), 121.8 (C), 112.8 (CH), 106.3 (CH), 65.2 (CH), 63.8 (CH), 60.0
(CH2), 55.4 (CH3), 51.5 (CH2), 42.6 (C), 36.2 (CH2), 32.1 (CH2), 27.1
(CH2), 22.0 (CH2); IR (neat, NaCl plates) 3369, 2917, 1558, 1507, 1443,
1277, 1131, 1013 cmϪ1; MS (EI) m/z 275.1520 (C16H21NO3 requires
275.1521, Mϩ , 100%), 258 (26), 247 (15), 246 (18), 228 (14), 204 (16),
ؒ
203 (41), 202 (17), 187 (19).
¶ Selected spectral data for compound 2: H NMR (500 MHz, CDCl3)
δ 6.68 (s, 1H), 6.58 (s, 1H), 4.42 (d, J 16.6 Hz, 1H), 3.88 (s, 3H), 3.82
1
2004
J. Chem. Soc., Perkin Trans. 1, 2001, 2002–2005