COMMUNICATIONS
other residues. However, qualitative examination of the COSY
spectrum reveals similar vicinal coupling patterns.
In conclusion, by determining the solution structure of 1, we
have demonstrated that N,N'-linked oligoureas of general
formula B belong to the growing family of non-natural non-
peptide oligomers with defined and predictable secondary
structures. Although heptaurea 1 forms a (P)2.5 helix of
approximately 5.1 ä pitch that is closely related to the
(P)2.614 helix of approximately 5 ä pitch of corresponding
g4-peptides,[4a] it is worth noting that both NH groups within
the same urea linkage may participate in intramolecular
[9] D. A. Case, D. A. Pearlman, J. W. Caldwell, D. E. Cheatham III, W. S.
Ross, C. L. Simmerling, T. A. Darden, K. M. Merz, R. V. Stanton,
A. L. Cheng, J. J. Vincent, M. Crowley, V. Tsui, R. J. Radmer, Y. Duan,
J. Pitera, I. Massova, G. L. Seibel, U. C. Singh, P. K. Weiner, P. A.
Kollman, AMBER6, University of California, San Francisco, 1999
[10] Further experimental evidence for C Oi ¥¥¥ HN'i2 and C Oi ¥¥¥ HNi3
hydrogen bonds is gained from the determination of temperature
coefficients. N'Hi2 for i 1 4 and NHi3 for i 1 4 have temper-
ature coefficients with absolute values <4 ppbKÀ1, which indicates
limited solvent accessibility. In addition, temperature coefficients of
N'Hi2 for i 2 4 (3.5 ppbK À1 <À Dd/DT< 3.8 ppbKÀ1) have higher
absolute values than those of NHi3 for i 2 4 (1.5 ppbK À1 <À Dd/
DT< 2.5 ppbKÀ1). This trend could suggest an increased solvent
hydrogen bonding to the same C O group. The knowledge of
the three-dimensional structure of 1 is likely to be useful for
the de novo design of oligoureas with controlled shape and
defined biological activities.
accessibility for N'Hi2 compared to NHi3
.
Received: October 1, 2001 [Z17991]
[1] S. H. Gellman Acc. Chem. Res. 1998, 31, 173 180; K. Kirshenbaum,
R. N. Zuckermann, K. A. Dill, Curr. Opin. Struct. Biol. 1999, 9, 530
535.
Self-Assembling Organic Nanotubes from
Enantiopure Cyclo-N,N'-Linked Oligoureas:
Design, Synthesis, and Crystal Structure
[2] For representative examples of helical b-peptides, see D. Seebach, M.
Overhand, F. N. M. K¸hnle, B. Martinoni, L. Oberer, U. Hommel, H.
Widmer, Helv. Chim. Acta 1996, 79, 913 941; D. Seebach, S. Abele, K.
Gademann, G. Guichard, T. Hintermann, B. Jaun, J. L. Matthews, J. V.
Schreiber, L. Oberer, U. Hommel, H. Widmer, Helv. Chim. Acta 1998,
81, 932 982; S. Abele, G. Guichard, D. Seebach, Helv. Chim. Acta
1998, 81, 2141 2156; D. Seebach, T. Sifferlen, P. A. Mathieu, A. M.
H‰ne, C. M. Krell, D. J. Bierbaum, S. Abele, Helv. Chim. Acta 2000,
83, 2849 2864; H. Appella, L. A. Christianson, I. L. Karle, D. R.
Powell, S. H. Gellman, J. Am. Chem. Soc. 1996, 118, 13071 13072;
D. H. Appella, L. A. Christianson, D. A. Klein, D. R. Powell, X.
Huang, J. J. Barchi, Jr, S. H. Gellman, Nature 1997, 387, 381 384;
D. H. Appella, J. J. Barchi, Jr, S. R. Durell, S. H. Gellman, J. Am.
Chem. Soc. 1999, 121, 2309 2310; X. Wang, J. F. Espinosa, S. H.
Gellman, J. Am. Chem. Soc. 2000, 122, 4821 4822.
[3] For representative examples of sheet and turn structures with b-
peptides, see a) D. Seebach, S. Abele, K. Gademann, B. Jaun, Angew.
Chem. 1999, 111, 1700 1703; Angew. Chem. Int. Ed. 1999, 38, 1595
1597; b) S. Krauth‰user, L. A. Christianson, D. R. Powell, S. H.
Gellman, J. Am. Chem. Soc. 1997, 119, 11719 11720; c) Y. J. Chung,
R. B. R. Huck, L. A. Christianson, H. E. Stanger, S. Krauth‰user,
D. R. Powell, S. H. Gellman, J. Am. Chem. Soc. 2000, 122, 3995 4004.
[4] For leading references on g-peptides, see a) T. Hintermann, K.
Gademann, B. Jaun, D. Seebach, Helv. Chim. Acta 1998, 81, 983
1002; b) D. Seebach, M. Brenner, M. Rueping, B. Schweizer, B. Jaun,
Chem. Commun. 2001, 207 208; c) S. Hanessian, X. Luo, R. Schaum,
S. Michnick, J. Am. Chem. Soc. 1998, 120, 8569 8570; d) S. Hanessian,
X. Luo, R. Schaum, Tetrahedron Lett. 1999, 40, 4925 4929.
Vincent Semetey, Claude Didierjean, Jean-Paul Briand,
¬
Andre Aubry, and Gilles Guichard*
Assembly of self-complementary cyclo-oligomeric subunits
through noncovalent processes (for example, hydrogen bond-
ing, aromatic stacking) has emerged as a powerful strategy to
generate artificial organic nanotubular structures.[1, 2] Highly
functionalized tubular assemblies based on peptides have
attracted much interest recently in this area. Ghadiri and co-
workers have compellingly demonstrated that 24- and 30-
membered-ring cyclo-a-peptides with an even number of
alternating d- and l-amino acids stack in an antiparallel b-
sheet-like arrangement to form hydrogen-bonded tubular
4]
structures, that is, ™peptide nanotubes∫.[2
Remarkably,
related cyclic peptides consisting exclusively of b-amino
acids[5, 6] (16- and 12-membered ring), of alternating a- and
b-amino acids[7] (14-membered ring), or of vinylogous d-
amino acids[8] (18-membered ring) also form tubular stacks.
We have shown previously[9] that linear N,N'-linked oli-
goureas A consisting of homochiral residues adopt a stable
2.5-helical secondary structure in solution. The helix is
characterized by the simultaneous presence of 12- and 14-
membered hydrogen-bonded rings resulting from the capacity
of the urea group to establish self-complementary bidirec-
[5] a) K. Burgess, D. S. Linthicum, H. Shin, Angew. Chem. 1995, 107, 975
977; Angew. Chem. Int. Ed. Engl. 1995, 34, 907 908; b) K. Burgess, J.
Ibarzo, D. S. Linthicum, D. H. Russell, H. Shin, A. Shitangkoon, R.
Totani, A. J. Zhang, J. Am. Chem. Soc. 1997, 119, 1556 1564.
[6] a) J. M. Kim, Y. Bi, S. Paikoff, P. G. Schultz, Tetrahedron Lett. 1996, 37,
5305 5308; b) A. Boeijen, R. M. J. Liskamp, Eur. J. Org. Chem. 1999,
2127 2135; c) G. Guichard, V. Semetey, C. Didierjean, A. Aubry, J. P.
Briand, M. Rodriguez, J. Org. Chem. 1999, 64, 8702 8705; d) G.
Guichard, V. Semetey, M. Rodriguez, J. P. Briand, Tetrahedron Lett.
2000, 41, 1553 1557.
[*] Dr. G. Guichard, V. Semetey, Dr. J.-P. Briand
¬
Immunologie et Chimie Therapeutiques, UPR CNRS 9021
¬
Institut de Biologie Moleculaire et Cellulaire
[7] Similarly, Seebach and co-workers have shown in the case of a b-
heptapeptide that J(NH,bCH) values decrease only slowly upon an
increase of the temperature from 298 to 353 K. A decrease of about
0.4 Hz was observed for the central residues (3 6) and about 0.7 Hz
for the flanking residues 2and 7: K. Gademann, B. Jaun, D. Seebach,
R. Perozzo, L. Scapozza, G. Folkers, Helv. Chim. Acta 1999, 82, 1 11.
15, rue Descartes, 67084 Strasbourg (France)
Fax : (33)3-88-61-06-80
Dr. C. Didierjean, Dr. A. Aubry
LCM3B, UMR-CNRS 7036, Groupe Biocristallographie
¬
¬
3
[8] In the case of residue 3, J(aCH2,N'H) values were extracted directly
Universite Henri Poincare
BP 239, 54506 Vand˙uvre, France
from the 1D NMR spectrum, but decoupling experiments were
required to access precise 3J(bCH,aCH2)values. Severe overlaps in the
aCH region precluded measurement of the 3J(bCH,aCH2) values for
Supporting information for this article is available on the WWW under
Angew. Chem. Int. Ed. 2002, 41, No. 11
¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002
1433-7851/02/4111-1895 $ 20.00+.50/0
1895