SINGLE-POT SYNTHESIS OF ALKYL-SUBSTITUTED QUINOLINES
897
128.05 (С3a), 135.68 (С7a), 137.16 (С2). Mass spectrum,
m/z: 201 [M]+.
17. Makhmutov, A.R., Mustafin, A.G., and Usmanov, S.M.,
Int. J. Environ. Sci. Educ., 2016, vol. 11, p. 11831.
18. Tursky, M., Lorentz-Petersen, L.L.R., Olsen, L.B., and
Madsen, R., Org. Biomol. Chem., 2010, vol. 8, p. 5576.
doi 10.1039/c0ob00106f
2,3-Dibutylindole (5c). Yield 25%, pale yellow oil,
1
bp 162°C (1 mmHg). H NMR spectrum (CDCl3), δ,
ppm: 0.88 t (3H, CH3, J = 6.5 Hz), 0.92 t (3H, CH3,
J = 6.5 Hz), 1.36–1.42 m [4H, (CH2)2CH2CH3], 1.62–
1.67 m (4H, CH2CH2CH2CH3), 2.75–2.94 m [4H,
CH2(CH2)2CH3], 6.96–7.08 m (2H, С5H, С6H), 7.26 d
(2H, С7H, J = 8.0 Hz), 7.52 d (2H, С4H, J = 8.0 Hz),
7.68 br.s (1Н, NH). 13С NMR spectrum, δС, ppm:
13.76 (CH3), 13.82 (CH3), 22.06 [(CH2)2CH2CH3], 22.38
[(CH2)2CH2CH3], 30.54 (CH2CH2CH2CH3), 33.03
(CH2CH2CH2CH3), 24.36 [CH2(CH2)2CH3], 27.94
[CH2(CH2)2CH3], 109.12 (С3), 111.01 (С7), 117.09
(С4), 119.58 (С5), 121.79 (С6), 127.83 (С3a), 136.02
(С7a), 136.75 (С2). Mass spectrum, m/z: 229 [M]+.
19. Khusnutdinov, R.I., Bayguzina, A.R., and Aminov, R.I.,
Russ. Chem. Bull., 2013, vol. 62, p. 133. doi 10.1007/
s11172-013-0019-z
20. Khusnutdinov, R.I., Bayguzina, A.R., and Aminov, R.I.,
Russ. J. Gen. Chem., 2015, vol. 85, no. 12, p. 2725. doi
10.1134/S1070363215120105
21. Khusnutdinov, R.I., Bayguzina, A.R., and Aminov, R.I.,
Russ. J. Gen. Chem., 2016, vol. 86, no. 7, p. 1613. doi
10.1134/S1070363216070136
22. Bulgakov, R.G., Kuleshov, S.P., Vafin, R.R., and
Dzhemilev, U.M., Russ. J. Org. Chem., 2009, vol. 45,
no. 6, p. 944. doi 10.1134/S1070428009060268
23. Makhmutov, A.R., J. Sib. Federal Univ., Chem., 2017,
vol. 10, no. 2, p. 154. doi 10.17516/1998-2836-0014
24. Tojo, G. and Fernandez, M., Oxidation of Alcohols to
Aldehydes and Ketones, New York: Springer, 2006,
p. 375.
REFERENCES
1. Prier, C.K., Rankic, D.A., and MacMillan, D.W.C.,
Chem. Rev., 2013, vol. 113, p. 5322. doi 10.1021/cr300503r
2. Schultz, D.M. and Yoon, T.P., Science, 2014, vol. 343,
p. 985. doi 10.1126/science.1239176
3. Narayanam, J.M.R. and Stephenson, C.R.J., Chem. Soc.
Rev., 2011, vol. 40, p. 102. doi 10.1039/b913880n
4. Yoon, T.P., Ischay, M.A., and Du, J., Nat. Chem., 2010,
vol. 2, p. 527. doi 10.1038/nchem.687
5. Nicewicz, D.A. and Nguyen, T.M., ACS Catal., 2014,
vol. 4, p. 355. doi 10.1021/cs400956a
6. Sagadevan, A., Ragupathi, A., and Hwang, K.C.,
Angew. Chem. Int. Ed., 2015, vol. 54, p. 13896. doi
10.1002/ange.201506579
7. Mitamura, T., Iwata, K., and Ogawa, A., J. Org. Chem.,
2011, vol. 76, p. 3880. doi 10.1021/jo200299d
8. Zhou, X.F., Sun, Y.Y., Dai, J.J., Xu, J., and Xu, H.J.,
J. Photochem. Photobiol. (A), 2018, vol. 355, p. 186.
doi 10.1016/j.jphotochem.2017.09.037
9. Eicher, T. and Hauptmann, S., The Chemistry of
Heterocycles: Structure, Reactions, Syntheses, and
Applications, Weinheim: Wiley-VCH, 2003.
10. Humphrey, G.R. and Kuethe, J.T., Chem. Rev., 2006,
vol. 106, p. 2875. doi 10.1021/cr0505270
11. Joucla, L. and Djakovitch, L., Adv. Synth. Catal., 2009,
vol. 351, p. 673. doi 10.1002/adsc.200900059
25. Gogoi, P. and Konwar, D., Org. Biomol. Chem., 2005,
vol. 3, p. 3473. doi 10.1039/b509527a
6. Meyers, C.Y., J. Org. Chem., 1961, vol. 26, no. 4,
2
p. 1046. doi 10.1021/jo01063a018
27. Stevens, R.V., Chapman, K.T., and Weller, H.N.,
J. Org. Chem., 1980, vol. 45, no. 10, p. 2030. doi
10.1021/jo01298a066
28. Nwaukwa, S.O. and Keehn, P.M., Tetrahedron Letts.,
1982, vol. 23, p. 35. doi 10.1016/S0040-4039(00)97525-7
29. Anelli, P.L., Biffi, C., Montanari, F., and Quici, S.,
J. Org. Chem., 1987, vol. 52, no. 12, p. 2559. doi
10.1021/jo00388a038
30. Vollhardt, P and, Schore, N., Organic Chemistry: Structure
and Function, New York: W.E. Freeman and Company,
2007, p. 882.
31. Feng, W. and Nansheng, D., Chemosphere, 2000,
vol. 41, p. 1137. doi 10.1016/S0045-6535(00)00024-2
32. Ruppert, G. and Bauer, R., J. Photochem. Photobiol.
(A), 1993, vol. 73, p. 75. doi 10.1016/1010-6030(93)
80035-8
33. Makhmutov, A.R. and Usmanov, S.M., Bashkir Chem.
J., 2017, vol. 24, no. 4, p. 33.
34. Bulgakov, R.G., Kuleshov, S.P., Makhmutov, A.R., and
Dzhemilev, U.M., Kinet. Catal., 2010, vol. 51, no. 4,
p. 534. doi 10.1134/S0023158410040129
35. Bulgakov, R.G., Kuleshov, S.P., and Makhmutov, A.R.,
Russ. Chem. Bull., 2007, vol. 56, no. 3, p. 443. doi
10.1007/s11172-007-0071-7
12. Alvarez-Builla, J., Vaquero, J.J., and Barluenga, J.,
Modern Heterocyclic Chemistry, Weinheim: Wiley-
VCH, 2011.
13. Somei, M. and Yamada, F., Nat. Prod. Rep., 2004,
vol. 21, p. 278. doi 10.1039/B212257J
36. Weissberger, A., Proskauer, E.S., Riddick, J.A., and
Toops, E.E., Technique of Organic Chemistry, New
York: Wiley, 1955, vol. 7.
37. Karyakin, Yu.V. and Angelov, I.I., Chistye khimicheskie
veshchestva (Pure Chemical Dubstances), Moscow:
Khimiya, 1974, p. 285.
14. Shiri, M., Chem. Rev., 2012, vol. 112, p. 3508. doi
10.1021/cr2003954
15. Biddle, M.M., Lin, M., and Scheidt, K.A., J. Am. Chem.
Soc., 2007, vol. 129, p. 3830. doi 10.1021/ja070394v
16. Bhalla, V., Vij, V., Kumar, M., Sharma, P.R., and Kaur, T.,
Org. Lett., 2012, vol. 14, p. 1012. doi 10.1021/ol203339c
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 88 No. 5 2018