10.1002/anie.201811621
Angewandte Chemie International Edition
COMMUNICATION
were carried out (Scheme 5). The H-bonding ability of catalyst
was first investigated. When chiral sulfide was protected by
different groups such as Bz, Ts, and Tf, only C7 with strong H-
bond donor Tf group led to product in high ee and excellent dr
(Scheme 5a). In contrast, C5, C6 and C8 with an improper or no
H-bond donor gave racemic products in low yields with poor dr.
These results indicate that the TfNH group of catalyst is pivotal
for the reactivity and construction of chiral environment of the
transformation. However, when substrate did not contain H-bond
donor, e.g., 1aa with an OBz group, the reaction gave the
product with low ee and poor dr (Scheme 5b). In light of these
results, H-bonding interaction is essential for the success of
reaction. Besides, when the sulfoxide from the corresponding
sulfide catalyst was used as catalyst for chlorination of 1a,
almost no reaction took place under similar conditions, which
reveals that sulfoxide cannot be the catalyst (see the Supporting
Information). Based on these observations and our previous
studies,[12] the mechanism is proposed to go through Int-I
formed by the reaction of catalyst and DCDMH (Scheme 5c). It
interacts with diolefin to generate Int-II with an acid-derived
anion bridge built by H-bond binding. The anion bridge might
guarantee the reactivity of substrate by accelerating the attack of
the phenyl group towards the chloriranium ion and the
stereoselectivity of reaction. As shown on Int-II′, when H-bond
donor does not exist, the bridge cannot be formed, which
possibly leads to the collapse of the chloriranium ion, and then
poor stereoselectivity.
[3]
[4]
a) A. J. Cresswell, S. T.-C. Eey, S. E. Denmark, Angew. Chem. Int. Ed.
2015, 54, 15642; Angew. Chem. 2015, 127, 15866; b) M. G. Martinez,
D. A. Alonso, M. I. Pastor, G. Guillena, A. Baeza, Asian. J. Org. Chem.
2016, 5, 1428.
For asymmetric intramolecular chlorocyclization of alkenes, see: a) K.
Shibatomi, Y. Soga, A. Narayama, I. Fujisawa, S. Iwasa, J. Am. Chem.
Soc. 2012, 134, 9836; b) K. Shibatomi, M. Kotozaki, N, Sasaki, I.
Fujisawa, S. Iwasa, Chem. Eur. J. 2015, 21, 14095; c) K. Shibatomi, K.
Kitahara, N. Sasaki, Y. Kawasaki, I. Fujisawa, S. Iwasa, Nat. Commun.
2017, 8, 15600.
[5]
For asymmetric intramolecular chlorocyclization of alkenes, see: a) D. C.
Whitehead, R. Yousefi, A. Jaganathan, B. Borhan, J. Am. Chem. Soc.
2010, 132, 3298; b) A. Jaganathan, A. Garzan, D. C. Whitehead, R. J.
Stapless, B. Borhan, Angew. Chem. Int. Ed. 2011, 50, 2593; Angew.
Chem. 2011, 123, 2641; c) R. Yousefi, D. C. Whitehead, J. M. Mueller,
R. J. Staples, B. Borhan, Org. Lett. 2011, 13, 608; d) A. Jaganathan, R.
Staples, B. Borhan, J. Am. Chem. Soc. 2013, 135, 14806; e) Q. Yin, S.-
L. You, Org. Lett. 2013, 15, 4266; f) X. Zeng, C. Miao, S. Wang, C. Xia,
W. Sun, Chem. Commun. 2013, 49, 2418. g) A. Garzan, A, Jaganathan,
N. S. Marzijarani, R. Yousefi, D. C. Whitehead, J. E. Jackson, B.
Borhan, Chem. Eur. J. 2013, 19, 9015; h) Q. Yin, S.-L. You, Org. Lett.
2014, 16, 2426; i) Y.-M. Yu, Y.-N. Huang, J. Deng, Org. Lett. 2017, 19,
1224.
[6]
For asymmetric intermolecular chlorofunctionalization of alkenes, see: a)
K. C. Nicolaou, N. L. Simmons, Y. Ying, P. M. Heretsh, J. S. Chen, J.
Am. Chem. Soc. 2011, 133, 8134; b) B. Soltanzadeh, A. Jaganathan, R.
J. Staples, B. Borhan, Angew. Chem. Int. Ed. 2015, 54, 9517; Angew.
Chem. 2015, 127, 9653; c) B. Soltanzadeh, A. Jaganathan, Y. Yi, R. J.
Staples, B. Borhan. J. Am. Chem. Soc. 2017, 139, 2132; d) M. L.
Landry, D. X. Hu, G. M. Mckenna, N. Z. Burns, J. Am. Chem. Soc. 2016,
138, 5150; e) P. Zhou, L. Chen, X. Zhong, X. Liu, X, Feng, J. Am.
Chem. Soc. 2017, 139, 13414.
In summary, we have developed an efficient approach toward
enantioselective chlorination and desymmetrization of aryl-
tethered diolefins and diaryl-tethered olefins by bifunctional
sulfide catalysis. Valuable teralins bearing one or two quaternary
stereocenters and tricyclic hexahydrophenalene derivatives
were obtained with excellent enantio- and diastereoselectivities.
This work successfully merges chalcogenide catalysis into
asymmetric chlorination for the first time, which provides a new
opportunity for asymmetric chlorination. Further studies on
mechanisms and other asymmetric chlorination reactions by
chalcogenide catalysis are underway.
[7]
[8]
[9]
a) Q. Yin, S.-G. wang, X.-W. Liang, D.-W. Gao, J. Zheng, S. L. You,
Chem Sci. 2015, 6, 4179; b) M. Stodulski, S. V. Kohlhepp, G. Raabe, T.
Gulder, Eur. J. Org. Chem. 2016, 2170.
a) Z.-M. Chen, Q.-W. Zhang, Z.-H. Chen, Y.-Q. Tu, F.-M. Zhang, J.-M.
Tian, J. Am. Chem. Soc. 2011, 133, 8818; b) Q. Yin, S.-L. You, Org.
Lett. 2014, 16, 1810.
a) G. W. Gribble, Acc. Chem. Res. 1998, 31, 141; b) G. W. Gribble,
Chemosphere 2003, 52, 289; c) F. H. Vaillancount, E. Yeh, D. A.
Vosburg, S. Garneau-Tsodikova, C. Walsh, Chem. Rev. 2006, 106,
3364; d) C. Wagner, M. E. Omari, G. M. Konig, J. Nat. Prod. 2009, 72,
540; e) G. W. Gribbe, Environ. Chem. 2015, 12, 396.
Recieved: automatically insert
Published online: automatically insert
[10] a) S. E. Denmark, D. Kalyani, W. R. Collins, J. Am. Chem. Soc. 2010,
132, 15752; b) S. E. Denmark, D. J. P. Kornfilt, T. Vogler, J. Am. Chem.
Soc. 2010, 133, 15308; c) S. E. Denmark, A. Jaunet, J. Am. Chem. Soc.
2013, 135, 6419; d) S. E. Denmark, H. M. Chi, J. Am. Chem. Soc. 2014,
136, 3655; e) S. E. Denmark, S. Rossi, M. P, H. Wang, J. Am. Chem.
Soc. 2014, 136, 13016; f) S. E. Denmark, H. M. Chi, J. Am. Chem. Soc.
2014, 136, 8915; g) S. E. Denmark, E. Hartmann, D. J. P. Kornfilt, H.
Wang, Nat. Chem. 2014, 6, 1056; h) S. E. Denmark, H. M. Chi, J. Org.
Chem. 2017, 82, 3826; i) Z. Tao, K. A. Robb, K. Zhao, S. E. Denmark, J.
Am. Chem. Soc. 2018, 140, 3569.
Acknowledgements
We thank the “One Thousand Youth Talents” Program of China,
the National Natural Science Foundation of China (Grant No.
21772239), and the Natural Science Foundation of Guangdong
Province (Grant No. 2014A030312018) for financial support.
Keywords: enantioselective chlorination · diolefins · sulfide
catalysis · Lewis base catalysis · synthetic methods
[11] a) L. Zhou, C. K. Tan, X. Jiang, F. Chen, Y.-Y. Yeung, J. Am. Chem.
Soc. 2010, 132, 15474; b) L, Zhou, J, Chen, C. K. Tan, Y.-Y. Yeung, J.
Am. Chem. Soc. 2011, 139, 9164; c) C. K. Tan, Y.-Y. Yeung, Org. Lett.
2011, 13, 2738; d) X. Jiang, C. K. Tan, L, Zhou, Y.-Y. Yeung, Angew.
Chem. Int. Ed. 2012, 51, 7771; Angew. Chem. 2012, 124, 7891; e) Y.
Zhao, X. Jiang, Y.-Y. Yeung, Angew. Chem. Int. Ed. 2013, 52, 8579;
Angew. Chem. 2013, 125, 8741; f) F. Chen, C. K. Tan, Y.-Y. Yeung, J.
Am. Chem. Soc. 2013, 135, 1232; g) D. W. Tay, G. Y. C. Leung, Y.-Y.
Yeung, Angew. Chem. Int. Ed. 2014, 53, 5161; Angew. Chem. 2014,
126, 5261; h) Z. Ke, C. K. Tan, F. Chen, Y.-Y. Yeung, J. Am. Chem.
Soc. 2014, 136, 5627; i) J. Y. See, H. Yang, Y. Zhao, M. W. Wong, Z.
Ke, Y.-Y. Yeung, ACS Catal. 2018, 8, 850.
[1]
For selected reviews, see: a) S. E. Denmark, W. E. Kuester, M. T. Burk,
Angew. Chem. Int. Ed. 2012, 51, 10938; Angew. Chem. 2012, 124,
11098; b) S. R. Chemler, M. T. Bovino, ACS Catal. 2013, 3, 1076; c) Y.
Zhu, C. Bruneau, J. L. Wang, N. Shibata, M. Soloshonok, V. A.
Soloshonok, J. A. S. Coelho, F. D. Toste, Chem. Rev. 2018, 118, 3887.
For selected examples, see: d) A. Sakakura, A. Ukai, K. Ishihara,
Nature 2007, 445, 900; e) A. M. Arnold, A. Pothig, M. Drees, T. Gluder,
J. Am. Chem. Soc. 2018, 140, 4344.
[2]
a) A. N. French, S. Bissmire, T. Wirth, Chem. Soc. Rev. 2004, 33, 354;
b) U. Hennecke, Chem. Asian. J. 2012, 7, 456; c) K. Murai, H. Fujioka,
Heterocycles 2013, 87, 763; d) C. K. Tang, Y.-Y. Yeung, Chem.
Commun. 2013, 49, 7985; e) S. Zheng, C. M. Schienebeck, W. Zhang,
H.-Y. Wang, W. Tang, Asian. J. Org. Chem. 2014, 3, 366; f) Y. A.
Cheng, W. Z. Yu, Y.-Y. Yeung, Org. Biomol. Chem. 2014, 12, 2333; g)
M. L. Landy, N. Z. Burns, Acc. Chem. Res. 2018, 51, 1260.
[12] a) X. L, R. An, X, Zhang, J. Luo, X. Zhao, Angew. Chem. Int. Ed. 2016,
55, 5846; Angew. Chem. 2016, 128, 5940; b) J. Luo, Y. Liu, X. Zhao,
Org. Lett. 2017, 19, 3434; c) J. Luo, X. Liu, X. Zhao, Synlett 2017, 28,
397; d) J. Luo, Q. Cao, X. Zhao, Nat. Commun. 2018, 9, 527; e) X. Liu,
Y. Liang, J. Ji, J. Luo, X. Zhao, J. Am. Chem. Soc. 2018, 140, 4782; f) J.
Xu, Y. Zhang, T. Qin, X. Zhao, Org. Lett. 2018, 20, 6384.
This article is protected by copyright. All rights reserved.