4.44–4.65 (1 H, m, CH(CH3)2), 4.80, 4.88 (2 H, 2 × s, ratio
60 : 40, CH2), 6.71–6.75 (1 H, m, Ar-H), 7.34–7.56 (4 H, m,
Ar-H), 7.79–7.87 (1 H, m, Ar-H), 8.30–8.33 (1 H, m, Ar-H);
δC(75.5 MHz, CDCl3) 20.88, 21.30 (CH(CH3)2), 28.69, 28.84
(C(CH3)3), 46.44 (CH), 49.13 (CH2), 72.67 (CH2), 80.54
(C(CH3)3), 105.25, 121.80, 122.10, 126.16, 127.06, 128.08,
135.03 (Ar-ipso); m/z (FAB) 357 ([M]ϩ, 64%), 339 (16), 313 (18),
302 (98), 289 (14), 258 (61), 158 (59), 154 (100), 136 (95), 116
(58), 107 (65), 95 (79) (Found: [M]ϩ, 357. C21H27NO4 requires
m/z, 357).
m/z (CI) 260 ([M ϩ H]ϩ, 77%), 242 (7), 145 (34), 128 (6), 116
(74), 100 (100), 98 (28), 84 (13), 72 (31), 58 (30) (Found:
[M ϩ H]ϩ, 260.1650. C16H21NO2 requires m/z, 260.1650). The
compound from reduction of 23 using Ru()–aminoindanol 1
was deprotected in an identical manner to give R-(ϩ)-24 in 93%
yield and 64% ee.
Acknowledgements
This paper is dedicated to the memory of Barrie Percival.
We thank the Brazilian CNPq for a Scholarship to A. K. and
Professor D. Games and Dr B. Stein of the EPSRC National
Mass Spectroscopic Service (Swansea) for HRMS analysis of
certain compounds. We wish to acknowledge the use of the
EPSRC’s Chemical Database Service at Daresbury.25
(R)-(؊)-N-tert-Butoxycarbonyl-N-isopropyl-N-[2-hydroxy-3-
(1-naphthyloxy)propyl]amine 22
A mixture of (p-cymene)ruthenium() chloride dimer (0.17 mg,
0.0028 mmol) and (1R,2R)-TsDPEN 2 (0.21 mg, 0.0021 mmol)
in a 5 : 2 formic acid–triethylamine mixture (2.5 mL) was stirred
at 28 ЊC for 15 min. N-Isopropyl-N-[2-oxo-3-(1-naphthyloxy)-
propyl]amine (0.37 g, 1.12 mmol) was added the solution was
stirred at 28 ЊC for 24 hours. Then the mixture was filtered
through silica and washed with ethyl acetate (60 ml). The solv-
ent was evaporated under reduced pressure to give the crude
compound, which was purified by flash chromatography (20%
v/v ethyl acetate–petroleum ether 40 : 60) to give R-(Ϫ)-22 as a
colourless liquid (0.36 g, 98.4%); [α]2D0 Ϫ2.92 (c = 0.96, ethanol);
νmax(neat)/cmϪ1 3418, 3053, 2974, 2931, 1738, 1687, 1596, 1581,
1509, 1403, 1366, 1269, 1164, 1103, 1069, 1020, 1001, 899,
861, 792, 771, 736; δH(300 MHz, CDCl3) 1.15 (3 H, d, J 6.6,
CH(CH3)CH3), 1.24 (3 H, d, J 6.8, CH(CH3)CH3), 1.51 (9 H, s,
C(CH3)3), 3.52 (2 H, d, J 4.5, CH2-N(tBoc)), 4.04–4.11 (1 H, m,
CH(CH3)2), 4.17–4.25 (3 H, m, CH2CH(OH)), 5.17 (1 H, br s,
OH), 6.85 (1 H, d, J 7.4, Ar-H), 7.34–7.52 (4 H, m, Ar-H), 7.77–
7.84 (1 H, m, Ar-H), 8.19–8.25 (1 H, m, Ar-H); δC(75.5 MHz,
CDCl3) 20.88 (CH(CH3)CH3), 21.39 (C(CH3)CH3), 28.86
(C(CH3)3), 49.08 (CH), 66.27 (CH2), 70.21 (CH2), 72.90 (CH),
81.17 (C(CH3)3), 105.15, 120.99, 122.04, 125.64, 125.81, 126.30,
References
1 (a) For a comprehensive survey of methods of aziridine synthesis
from double bonds, including a discussion of cyclisations of
β-amino alcohols see J. E. G. Kemp, in Comprehensive Organic
Synthesis, Volume 7, Academic Press, New York, 1991, ch. 3.5,
pp. 470–483; (b) R. S. Atkinson and B. J. Kelly, J. Chem. Soc.,
Chem. Commun., 1987, 1362.
2 (a) D. A. Evans, M. M. Faul and M. T. Bilodeau, J. Org. Chem.,
1991, 113, 726; (b) Z. Li, K. R. Conser and E. N. Jacobsen,
J. Am. Chem. Soc., 1993, 115, 5326; (c) D. A. Evans, M. M. Faul,
M. T. Bilodeau, B. A. Anderson and D. Barnes, J. Am. Chem. Soc.,
1993, 115, 5328; (d ) M. J. Haddadin, J. P. Freeman, Small Ring
Heterocycles, ed. A. Hassner, N.Y., 1985, part 3, p. 283; (e)
R. Paredes, H. Bastos, R. Montoya, A. L. Charez, W. R. Dolbier Jr.
and C. R. Burkholder, Tetrahedron, 1988, 44, 6821; ( f ) A. Azman,
J. Kroller and B. Plesnicar, J. Am. Chem. Soc., 1970, 101, 1107.
3 Monotosylated diamines with Ru() in iPrOH or HCO2H–TEA (a)
S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya and R. Noyori,
J. Am. Chem. Soc., 1995, 117, 7562; (b) A. Fujii, S. Hashiguchi,
N. Uematsu, T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1996,
118, 2521; (c) K. Püntener, L. Schwink and P. Knochel, Tetrahedron
Lett., 1996, 37, 8165. Monotosylated diamines with Rh() in
iPrOH; (d ) K. Mashima, T. Abe and K. Tani, Chem. Lett., 1998,
1199; (e) K. Mashima, T. Abe and K. Tani, Chem. Lett., 1998, 1201;
( f ) K. Murata, T. Ikariya and R. Noyori, J. Org. Chem., 1999, 64,
2186.
4 (a) M. J. Palmer and M. Wills, Tetrahedron: Asymmetry, 1999, 10,
2045; (b) M. Palmer, T. Walsgrove and M. Wills, J. Org. Chem., 1997,
62, 5226; (c) M. Wills, M. Gamble, M. Palmer, A. R. C. Smith, J. R.
Studley and J. A. Kenny, J. Mol. Catal. A; Chem., 1999, 146, 139; (d )
A. R. C. Smith, J. A. Kenny, A. J. R. Heck, J. J. Kettenes-van der
Bosch and M. Wills, Tetrahedron: Asymmetry, 1999, 10, 3267; (e)
M. Wills, M. J. Palmer, A. R. C. Smith, J. A. Kenny and
T. Walsgrove, Molecules, 2000, 5, 1; ( f ) J. A. Kenny, K. Versluis,
A. J. R. Heck, T. Walsgrove and M. Wills, Chem. Commun., 2000,
99.
126.80, 127.99, 134.89 (Ar-ipso), 154.53 (C᎐O); m/z (CI) 360
᎐
([M ϩ H]ϩ, 13%), 304 (21), 260 (36), 160 (98), 136 (19), 133
(100) (Found: [M ϩ H]ϩ, 360.2177. C21H29NO4 requires m/z,
360.2175). The reduction using (1S,2R)-1–propan-2-ol was
carried out using identical conditions to those reported.4b The
product, R-(Ϫ)-22 was formed in 99% yield and 64% ee as
determined by chiral HPLC analysis.
(R)-(؉)-N-Isopropyl-N-[2-hydroxy-3-(1-naphthyloxy)propyl]-
amine 24
To a solution of (R)-N-tert-butoxycarbonyl-N-isopropyl-N-[2-
hydroxy-3-(1-naphthyloxy)propyl]amine R-(Ϫ)-22 (0.32 g, 0.90
mmol) in dichloromethane (2 mL) TFA (2 mL) was added
slowly. After 2 hours the solvent was removed and the resulting
product was dissolved in ethyl acetate and NaOH solution 0.2
M was added until the pH = 7. The product was then extracted
with ethyl acetate and the combined organic layers were dried
over magnesium sulfate, filtered and the solvent removed
in vacuo. Recrystallisation (ethyl acetate–petroleum ether
40 : 60) gave (R)-N-isopropyl-N-[2-hydroxy-3-(1-naphthyloxy)-
propyl]amine R-(ϩ)-24 as a light yellow solid (0.20 g, 84.5%
yield). The product was determined to be of 83.0% ee by
HPLC analysis (Chiral OD, hexane–ethanol–diethylamine =
95 : 5 : 0.1 (0.5 mL minϪ1), R isomer 32.91 min, S isomer 54.76
min), mp 88–89 ЊC; [α]D20 ϩ5.1 (c = 1.6, ethanol); νmax(CDCl3)/
cmϪ1 3429, 2253, 1655, 1581, 1461, 1396, 1268, 1103, 908, 734,
650; δH(300 MHz, CDCl3) 1.11 (6 H, d, J 6.4, CH(CH3)2), 2.14
(2 H, br s, OH, NH), 2.81–2.91 (2 H, m, CH2NH), 2.98–3.04
(1 H, m, CH(CH3)2), 4.11–4.21 (3 H, m, CH2CH(OH)), 6.83
(1 H, dd, J 0.9, 7.5, Ar-H), 7.34–7.53 (4 H, m, Ar-H), 7.78–
7.83 (1 H, m, Ar-H), 8.21–8.28 (1 H, m, Ar-H); δC(75.5 MHz,
CDCl3) 23.45 (CH(CH3)CH3), 23.59 (C(CH3)CH3), 49.36
(CH), 49.83 (CH2), 69.81 (CH), 71.04 (CH2), 80.05 (C(CH3)3),
105.27, 121.01, 122.21, 125.65, 126.23, 126.84, 127.93 (Ar-ipso);
5 (a) J. A. Kenny, M. J. Palmer, A. R. C. Smith, T. Walsgrove and
M. Wills, Synlett, 1999, 1615; (b) A. Kawamoto and M. Wills,
Tetrahedron: Asymmetry, 2000, 11, 3257.
6 S. Gabriel, Ber. Dtsch. Chem. Ges., 1888, 21, 1049.
7 H. Wenker, J. Am. Chem. Soc., 1935, 57, 2328.
8 R. Appel and R. Kleinstuck, Chem. Ber., 1974, 107, 5.
9 I. Okada, K. Ichimura and R. Sudo, Bull. Chem. Soc. Jpn., 1970, 43,
1185.
10 O. Mitsunobu, Synthesis, 1981, 1.
11 J. T. Carlock and M. P. Mack, Tetrahedron Lett., 1978, 19,
5153.
12 P. G. Sammes and S. Smith, J. Chem. Soc., Chem. Commun., 1983,
682.
13 J. R. Pfister, Synthesis, 1984, 969.
14 (a) P. Wessig and J. Schwarz, Synlett, 1997, 893; (b) F. Effenberger
and U. Stelzer, Tetrahedron: Asymmetry, 1995, 6, 283.
15 H. J. C. Yeh, S. K. Balani, H. Yagi, R. M. E. Greene, N. D. Sharma,
D. R. Boyd and D. M. Jerina, J. Org. Chem., 1986, 51, 5439.
16 (a) J. F. Dellaria and K. J. Sallin, Tetrahedron Lett., 1990, 31, 2661;
(b) D. S. Jones, A. Srinivasan, S. Kasina, A. R. Fritzberg and D. W.
Wilkening, J. Org. Chem., 1989, 54, 1940; (c) L. M. Gustavson, T. N.
Rao, D. S. Jones and A. Fritzgerg, Tetrahedron Lett., 1991, 32,
5485.
17 M. Ho, J. K. K. Chung and N. Tang, Tetrahedron Lett., 1993, 34,
6513.
J. Chem. Soc., Perkin Trans. 1, 2001, 1916–1928
1927