molecule, exploiting an intramolecular hetero-Michael reac-
tion of a reversibly formed hemiketal alkoxide as the key
step in creating the BCD ring system.
Scheme 2a
Apart from constructing the 6,7-spiro-linked cyclic imine
(AG ring) system, building the 6,5,6-dispiroketal (BCD ring)
system presents a major challenge in the synthesis of 1 as
mentioned by the Kishi,6 Murai,4 and Hirama5 groups.
Although a number of methods have been developed to
synthesize bicyclic spiroketal subunits,7 the formation of
tricyclic dispiroketals has been less thoroughly investigated.8,9
The majority of reported synthetic strategies in either case
rely on the acid-catalyzed cyclization of open-chain hydroxy-
ketones. In this context, Kishi and co-workers demonstrated
that treatment of an appropriate tetrahydroxy diketone with
CSA led to the formation of a 2:3 mixture of C19 epimeric
dispiroketals, and the undesired isomer epimerized exclu-
sively to the natural series under silylation conditions.6 An
alternative approach to spiroketals involves the intramolecular
hetero-Michael reaction of a hemiketal alkoxide,10 which has
the advantage of generating a chiral center from an enone
in the conjugate addition step as well as a chiral spirocenter.
This elegant approach, however, has not yet been applied to
the synthesis of dispiroketals. It was readily apparent that
the strategy based on this approach would not only benefit
from the construction of the BCD ring system but also from
the direct assembly of the EF ring system (Scheme 1).
Scheme 1. Synthetic Plan for the C10-C31 Fragment 2
a Reagents and conditions: (a) BuLi, THF-HMPA (10:1), -78
°C, 1 h, 95%; (b) TsOH, MeOH-H2O, 35 h, 98%; (c) anisaldehyde
dimethyl acetal, PPTS, CH2Cl2, 6 h, 75%; (d) TESCl, imidazole,
CH2Cl2, 2 h, 98%; (e) DIBAL-H, CH2Cl2, -78 to -20 °C, 1 h,
87%; (f) SO3‚pyridine, Et3N, DMSO, 1 h, 96%; (g) MeMgI, THF-
Et2O, -78 to -50 °C, 2 h, 92%; (h) SO3‚pyridine, Et3N, DMSO,
1 h, 93%; (i) LiHMDS, ZnCl2, THF, -78 °C, then 9, 1.5 h, 98%;
(j) Ac2O, pyridine, DMAP, 20 h; (k) DBU, CH2Cl2, 0 °C, 1 h,
96% (two steps); (l) [(Ph3P)CuH]6, benzene, 10 h, 91%; (m)
MeMgI, Et2O, -78 °C, 1 h, 95%; (n) TBSOTf, 2,6-lutidine, CH2Cl2,
4 h 93%; (o) Bu4NF (1.05 equiv), THF-AcOH (10:1), 0 °C, 1 h,
88%; (p) SO3‚pyridine, Et3N, DMSO, 1 h, 94%; (q) 12, LiHMDS,
THF, -78 to -50 °C, 1.5 h, 88%; (r) Ac2O, pyridine, DMAP, 16
h; (s) DBU, CH2Cl2, 1 h, 89% (two steps); (t) DDQ, CH2Cl2-H2O
(10:1), 1 h, 93%; (u) Dess-Martin periodinane, CH2Cl2-pyridine,
0 °C, 1 h, 84%; (v) NCS, AgNO3, γ-collidine, CH3CN-H2O (4:
1), 0.5 h, 87%.
Focusing primarily on the two anomeric stabilization effects
due to the axial-type orientation of the C ring oxygen atom
with respect to both the B and D ring pyrans, we were thus
intrigued by the feasibility of the tandem hemiketal forma-
tion/hetero-Michael reaction initiated by selective desilylation
of 4 under thermodynamic conditions.
The synthetic sequence to the envisaged potential dispiroket-
al precursor 4 is detailed in Scheme 2. Alkylation of the
dithiane 611 with the iodide 512 and concurrent removal of
the acetal protective groups were followed by reprotection
(5) (a) Noda, T.; Ishiwata, A.; Uemura, S.; Sakamoto, S.; Hirama, M.
Synlett 1998, 298. (b) Ishiwata, A.; Sakamoto, S.; Noda, T.; Hirama, M.
Synlett 1999, 692. (c) Nitta, A.; Ishiwata, A.; Noda, T.; Hirama, M. Synlett
1999, 695.
(6) McCauley, J. A.; Nagasawa, K.; Lander, P. A.; Mischke, S. G.;
Semones, M. A.; Kishi, Y. J. Am. Chem. Soc. 1998, 120, 7647.
(7) For a review on the synthesis of spiroketals, see: Perron, F.; Albizati,
K. F. Chem. ReV. 1989, 89, 1617.
(8) (a) Kishi, Y.; Hatakeyama, S.; Lewis, M. D. In Frontiers of
Chemistry; Laidler, K. J., Ed.; Pergamon Press: Oxford, 1982; pp 287-
304. (b) Baker, R.; Brimble, M. A. J. Chem. Soc., Chem. Commun. 1985,
78. (c) Perron, F.; Albizati, K. F. J. Org. Chem. 1989, 54, 2047.
(9) For a review on the synthesis of dispiroketals, see: Brimble, M. A.;
Fare`s, F. A. Tetrahedron 1999, 55, 7661.
(10) (a) Smith, A. B., III; Schow, S. R.; Bloom, J. D.; Thompson, A. S.;
Winzenberg, K. N. J. Am. Chem. Soc. 1982, 104, 4015. (b) Williams, D.
R.; Barner, B. A. Tetrahedron Lett. 1983, 24, 427. (c) Negri, D. P.; Kishi,
Y. Tetrahedron Lett. 1987, 28, 1063. (d) Aicher, T. D.; Buszek, K. R.;
Fang, F. G.; Forsyth, C. J.; Jung, S. H.; Kishi, Y.; Matelich, M. C.; Scola,
P. M.; Spero, D. M.; Yoon, S. K. J. Am. Chem. Soc. 1992, 114, 3162. (e)
Toshima, H.; Aramaki, H.; Furumoto, Y.; Inamura, S.; Ichihara, A.
Tetrahedron 1998, 54, 5531.
(11) McGarvey, G. J.; Stepanian, M. W. Tetrahedron Lett. 1996, 37,
5461.
4076
Org. Lett., Vol. 3, No. 25, 2001