Organic Letters
Letter
Scheme 6. Acyl-Transfer Mechanism of Noncycloketone-
Derived Oxime Ether
REFERENCES
■
̈
(1) (a) Roque, J. B.; Kuroda, Y.; Gottemann, L. T.; Sarpong, R.
Nature 2018, 564, 244−248. For the definition of “scaffold hopping”,
̈
see: (b) Bohm, H.-J.; Flohr, A.; Stahl, M. Drug Discovery Today:
Technol. 2004, 1, 217−224.
(2) (a) Xia, Y.; Lu, G.; Liu, P.; Dong, G. Nature 2016, 539, 546−
550. (b) Deng, L.; Dong, G. Trends in Chemistry 2020, 2, 183−198.
(3) (a) Morcillo, S. P. Angew. Chem., Int. Ed. 2019, 58, 14044−
14054. (b) Xu, Y.; Qi, X.; Zheng, P.; Berti, C. C.; Liu, P.; Dong, G.
Nature 2019, 567, 373−378.
(4) (a) Zhao, H.; Fan, X.; Yu, J.; Zhu, C. J. Am. Chem. Soc. 2015,
137, 3490−3493. (b) Ren, R.; Zhao, H.; Huan, L.; Zhu, C. Angew.
Chem., Int. Ed. 2015, 54, 12692−12696. (c) Ding, D.; Wang, C. ACS
Catal. 2018, 8, 11324−11329. (d) Lu, B.; Cheng, Y.; Chen, L.-Y.;
Chen, J.-R.; Xiao, W.-J. ACS Catal. 2019, 9, 8159−8164. (e) Liu, Z.;
Shen, H.; Xiao, H.; Wang, Z.; Zhu, L.; Li, C. Org. Lett. 2019, 21,
5201−5205. (f) Dauncey, E. M.; Dighe, S. U.; Douglas, J. J.; Leonori,
D. Chem. Sci. 2019, 10, 7728−7733. (g) Wang, T.; Wang, Y.-N.;
Wang, R.; Zhang, B.-C.; Yang, C.; Li, Y.-L.; Wang, X.-S. Nat. Commun.
2019, 10, 5373. (h) Chen, J.; Wang, P.-Z.; Lu, B.; Liang, D.; Yu, X.-Y.;
Xiao, W.-J.; Chen, J.-R. Org. Lett. 2019, 21, 9763−9768. (i) Zhao, B.;
Wu, Y.; Yuan, Y.; Shi, Z. Chem. Commun. 2020, 56, 4676. (j) Li, Z.;
Torres-Ochoa, R. O.; Wang, Q.; Zhu, J. Nat. Commun. 2020, 11,
403−409. (k) Wu, L.; Wang, L.; Chen, P.; Guo, Y.-L.; Liu, G. Adv.
Synth. Catal. 2020, 362, 2189−2194. (l) Jiang, C.; Wang, L.; Zhang,
H.; Chen, P.; Guo, Y.-L.; Liu, G. Chem. 2020, 6, 2407−2419.
(5) Zimmerman, J. B.; Anastas, P. T.; Erythropel, H. C.; Leitner, W.
Science 2020, 367, 397−400.
(6) For selected reviews on N-heterocyclic carbene catalysis through
ionic pathways, see: (a) Grossmann, A.; Enders, D. Angew. Chem., Int.
Ed. 2012, 51, 314−325. (b) Bugaut, X.; Glorius, F. Chem. Soc. Rev.
2012, 41, 3511−3522. (c) Hopkinson, M. N.; Richter, C.; Schedler,
M.; Glorius, F. Nature 2014, 510, 485−496. (d) Yetra, S. R.; Patra, A.;
Biju, A. T. Synthesis 2015, 47, 1357−1378. (e) Flanigan, D. M.;
Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015,
115, 9307−9387. (f) Chen, X.-Y.; Liu, Q.; Chauhan, P.; Enders, D.
Angew. Chem., Int. Ed. 2018, 57, 3862−3873. (g) Murauski, K. J. R.;
Jaworski, A. A.; Scheidt, K. A. Chem. Soc. Rev. 2018, 47, 1773−1782.
(h) Mukherjee, S.; Biju, A. T. Chem. - Asian J. 2018, 13, 2333−2349.
(i) Mondal, S.; Yetra, S. R.; Mukherjee, S.; Biju, A. T. Acc. Chem. Res.
2019, 52, 425−436. (j) Das, T. K.; Biju, A. T. Chem. Commun. 2020,
56, 8537−8552. For one recent book on N-heterocyclic carbene
organocatalysis, see: N-Heterocyclic Carbenes in Organocatalysis; Biju,
A. T., Ed.; Wiley-VCH: Weinheim, Germany, 2019.
nucleophilic substitution of iminyl anion 15 to acylthiazolium
16.8 Captodative radical 9 is also a strong reductant (Ered
=
−0.5 V vs SCE). In addition, the N-centered radical prefers to
accept an electron because the electronegativity of the N atom
is higher than that of the C atom.24 The SET process between
iminyl radical 14 and captodative radical 9 should be fast,
yielding iminyl anion 15 and acylthiazolium 16. So, we are
inclined to think that the latter one is more possible.
In conclusion, we have introduced a strategy for NHC-
catalyzed C−C bond functionalization. Under the guidance of
this strategy, a radical-type cross-coupling between cyclic
oxime ether and an aromatic aldehyde has been developed.
This protocol demonstrated several good synthetic features
including environmentally friendliness, easily available starting
materials, and good yields. The development of an
enantioselective version of this C−C bond acylation is
underway in our lab.
ASSOCIATED CONTENT
* Supporting Information
■
sı
The Supporting Information is available free of charge at
1
Experimental procedures, characterization data, and H
and 13C NMR spectra of all new compounds (PDF)
(7) For selected reviews on N-heterocyclic carbene catalysis
involving radical intermediates, see: (a) Ishii, T.; Nagao, K.;
Ohmiya, H. Chem. Sci. 2020, 11, 5630−5636. (b) Ohmiya, H. ACS
Catal. 2020, 10, 6862−6869. (c) Liu, J.; Xing, X.-N.; Huang, J.-H.;
Lu, L.-Q.; Xiao, W.-J. Chem. Sci. 2020, 11, 10605−10613. (d) Dai, L.;
(e) Li, Q.-Z.; Zeng, R.; Han, B.; Li, J.-L. Chem. - Eur. J. 2020,
AUTHOR INFORMATION
Corresponding Author
■
Hai-Bin Yang − School of Chemical Engineering and Light
Industry, Guangdong University of Technology, Guangzhou
Author
(8) Guin, J.; De Sarkar, S.; Grimme, S.; Studer, A. Angew. Chem., Int.
Ed. 2008, 47, 8727−8730.
Dan-Hong Wan − School of Chemical Engineering and Light
Industry, Guangdong University of Technology, Guangzhou
510006, China
(9) (a) White, N. A.; Rovis, T. J. Am. Chem. Soc. 2014, 136, 14674−
14677. (b) Zhang, Y.; Du, Y.; Huang, Z.; Xu, J.; Wu, X.; Wang, Y.;
Wang, M.; Yang, S.; Webster, R. D.; Chi, Y. R. J. Am. Chem. Soc. 2015,
137, 2416−2419. (c) Du, Y.; Wang, Y.; Li, X.; Shao, Y.; Li, G.;
Webster, R. D.; Chi, Y. R. Org. Lett. 2014, 16, 5678−5681. (d) Chen,
X.-Y.; Chen, K.-Q.; Sun, D.-Q.; Ye, S. Chem. Sci. 2017, 8, 1936−1941.
(10) (a) Yang, W.; Hu, W.; Dong, X.; Li, X.; Sun, J. Angew. Chem.,
Int. Ed. 2016, 55, 15783−15786. (b) Dai, L.; Xia, Z.-H.; Gao, Y.-Y.;
Gao, Z.-H.; Ye, S. Angew. Chem., Int. Ed. 2019, 58, 18124−18130.
(c) Dai, L.; Ye, S. Org. Lett. 2020, 22, 986−990. (d) Xia, Z.-H.; Dai,
L.; Gao, Z.-H.; Ye, S. Chem. Commun. 2020, 56, 1525−1528.
(11) (a) Ishii, T.; Kakeno, Y.; Nagao, K.; Ohmiya, H. J. Am. Chem.
Soc. 2019, 141, 3854−3858. (b) Ishii, T.; Ota, K.; Nagao, K.; Ohmiya,
H. J. Am. Chem. Soc. 2019, 141, 14073−14077.
Complete contact information is available at:
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was sponsored by financial support from the 100
Young Talents Programme of Guangdong University of
Technology (no. 220413292).
1052
Org. Lett. 2021, 23, 1049−1053