Journal of the American Chemical Society
Page 4 of 6
(6) Cade, I. A.; Ingleson, M. J. Chem. Eur. J. 2014, 20, 12874−12880.
(7) Hirner, J. J.; Faizi, D. J.; Blum, S. A. J. Am. Chem. Soc. 2014, 136,
4740−4745.
(8) Hirner, J. J.; Blum, S. A. Tetrahedron 2015, 71, 4445−4449.
(9) Sanderson, R. T. Polar Covalence; Academic Press: New York, 1983.
(10) Roy, S.; Roy, S.; Neuenswander, B.; Hill, D.; Larock, R. C. J. Comb.
Chem. 2009, 11, 1128–1135.
(11) Pal, S.; Chatare, V.; Pal, M. Curr. Org. Chem. 2011, 15, 782–800.
(12) Yao, T.; Larock, R. C. J. Org. Chem. 2003, 68, 5936–5942.
(13) Oliver, M. A.; Gandour, R. D. J. Org. Chem. 1984, 49, 558–559.
(14) Yao, T.; Larock, R. C. Tetrahedron Lett. 2002, 43, 7401–7404.
(15) Rossi, R.; Carpita, A.; Bellina, F.; Stabile, P.; Mannina, L. Tetrahe-
dron 2003, 59, 2067–2081.
(16) Godoi, B.; Schumaches, R. F.; Zeni, G. Chem. Rev. 2011, 111, 2937–
2980.
(17) Nagaki, A.; Moriwaki, Y.; Yoshida, J. Chem. Commun. 2012, 48,
11211–11213.
(18) Larsen, M. A.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136,
4287−4299.
(19) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60,
7508−7510.
(20) Janecki, T., Ed. Natural Lactones and Lactams: Synthesis, Occur-
rence and Biological Activity; John Wiley-VCH: Weinheim, Germany,
2014; pp. 147–192.
(21) Pochet, L.; Frederick, R.; Masereel, B. Curr. Pharm. Des. 2004, 10,
3781–3796.
(22) Suzuki, A. Acc. Chem. Res. 1982, 15, 178−184.
(23) Pelter, A. Chem. Soc. Rev. 1982, 11, 191−225.
(24) Dimitrijević, E.; Taylor, M. ACS Catal. 2013, 3, 945–962.
(25) Chong, E.; Blum, S. A. J. Am. Chem. Soc. 2015, 137, 10144−10147.
(26) Gravett, E. C.; Hilton, P. J.; Jones, K.; Romero, F. Tetrahedron Lett.
2001, 42, 9081−9084.
(27) Fletcher, C. J.; Wheelhouse, K. M. P.; Aggarwal, V. K. Angew.
Chem. Int. Ed. 2013, 52, 2503−2506.
(28) Felix, A. M. J. Org. Chem. 1974, 39, 1427−1429.
(29) Manchand, P. S. J. Chem. Soc. D. 1971, 667.
(30) Warner, A. J.; Lawson, J. R.; Fasano, V.; Ingleson, M. J. Angew.
Chem. Int. Ed. 2015, 54, 11245–11249.
(31) Boeckman, R. K.; Potenza, J. C. Tetrahedron Lett. 1985, 26,
1411−1414.
(32) Miyaura, N. Chem. Rev. 1995, 95, 2457−2483.
(33) Badone, D.; Baroni, M.; Cardamone, R.; Ielmini, A.; Guzzi, U. J.
Org. Chem. 1997, 62, 7170−7173.
(34) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275−286.
(35) Darses, S.; Genet, J.-P. Chem. Rev. 2008, 108, 288−325.
(36) Bettinger, H. F.; Filthaus, M.; Bornemann, H.; Oppel, I. M. Angew.
Chem. Int. Ed. 2008, 47, 4744−4747.
(37) Marchal, E.; Uriac, P.; Legouin, B.; Toupet, L.; van de Weghe, P.
Tetrahedron 2007, 63, 9979–9990.
(38) Lawson, J. R.; Clark, E. R.; Cade, I. A.; Solomon, S. A.; Ingleson, M.
J. Angew. Chem. Int. Ed. 2013, 52, 7518–7522.
(39) For an example of alkyne activation by boron, see Hansmann, M. M.;
Melen, R. L; Rudolph, M.; Rominger, F.; Wadepohl, H.; Stephan, D. W.;
Hashmi, A. S. K. J. Am. Chem. Soc. DOI: 10.1021/jacs.5b09311.
(40) Del Grosso, A.; Singleton, P. J.; Muryn, C. A.; Ingleson, M. J. An-
gew. Chem. Int. Ed. 2011, 50, 2102–2106.
(41) Venkateswarlu, S.; Panchagnula, G.; Gottumukkala, A.; Subbaraju,
G. Tetrahedron 2007, 63, 6909–6914.
(42) Jansen, R.; Kunze, B.; Reichenbach, H.; Hofle, G. Eur. J. Org. Chem.
2002, 917–921.
(43) Neil, A.; Gordon, A.; Urquhart, M. Glaxo group limited patent
WO2012/80243 A2, 2012.
(44) Hobson, S. J.; Parkin, A.; Marquez, R. Org. Lett. 2008, 10, 2813–
2816.
(45) Liu, J.; Yu, L.-F.; Eaton, J. B.; Caldarone, B.; Cavino, K.; Ruiz, C.;
Terry, M.; Fedolak, A.; Wang, D.; Ghavami, A.; Lowe, D. A.; Brunner,
D.; Lukas, R. J.; Kozikowski, A. P. J. Med. Chem. 2011, 54, 7280−7288.
(46) Tu, K.; Hirner, J. J.; Blum S. A. Org. Lett. DOI:
10.1021/acs.orglett.5b03530
be applied to other systems to generate value-added borylated
heterocycles from simple alkylated heteroatoms.
1
2
3
4
5
6
7
8
In summary, this reaction is the first report of a transition-metal
free oxyboration reaction that adds boron and oxygen to carbon–
carbon π systems. It is also the first formal carboxyboration—
addition of the CO2 group and boron—across alkynes. This new
reactivity is enabled by dioxaborole activation of an alkyne to
promote oxycyclization.47 The reactivity lessons learned converge
on employing electrophilic boron reagents with the right balance
of carbophilicity vs. oxyphilicity, and with substrates exhibiting
slow competitive dealkylation prior to cyclization. These balances
enable the desired reactivity by avoiding competitive formation of
the strong B–O σ bond, which prevents oxyboration reactivity
under these catalyst free conditions. These balances are conven-
iently achieved with commercially available ClBcat and readily
available methyl ester substrates. This scalable method can toler-
ate a variety of functional groups that are incompatible with the
alternative strongly basic or oxidative-addition pathways that
comprise other leading borylation strategies. Additional mecha-
nistic studies and substrate class expansions are currently ongoing
in our research group. We envision that this mechanistically dis-
tinct oxyborylation strategy will serve as a springboard toward
broader application of catalyst-free boron–element addition reac-
tions to generate valuable borylated heterocyclic products.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
Full experimental procedures and characterization data, including
CIF data for 3aa. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare the following competing financial interest(s):
Provisional patent applications (no. 61/836,391 and no.
61/906,040) have been filed by the University of California.
ACKNOWLEDGMENT
This work was supported by
a grant from the NIH
(1R01GM098512-01), the University of California, Irvine, and an
Allergan Foundation Graduate Fellowship to D.J.F. We thank
Ms. Nicole. A. Nava and Dr. Mohammad Al-Amin for synthesis
of starting materials. We thank Dr. Joseph W. Ziller and Mr. Ja-
son R. Jones for X-ray diffraction analysis, and Dr. Phillip R.
Dennison for NMR spectroscopy assistance.
REFERENCES
(1) Brown, H. C. Tetrahedron 1961, 12, 117−138.
(2) Miyaura, N. Hydroboration, Diboration, and Stannylboration. In Cata-
lytic Heterofunctionalization; Togni, A., Grützmacher, H., Eds.; Wiley-
VCH: Weinheim, 2001; pp 1−46.
(3) Barbeyron, R.; Benedetti, E.; Cossy, J.; Vasseur, J.; Arseniyadis, S.;
Smietana, M. Tetrahedron 2014, 70, 8431−8452.
(4) Sakae, R.; Hirano, K.; Miura, M. J. Am. Chem. Soc. 2015, 137,
6460−6463.
(47) Electrophilic activation of C−C π systems in other contexts has been
reported employing the more electrophilic boron reagents (e.g., BCl3,
BBr3, BR3 and borenium species BO2L+), but not with neutral dioxyboron
systems (BO2X). For examples, see citations 6, 40 and also: a) Hans-
mann, M. M.; Melen, R. L.; Rominger, F.; Hashmi, A. S. K.; Stephan, D.
W. Chem. Commun. 2014, 50, 7243−7245; b) Wilkins, L. C.; Wieneke, P.;
(5) Hara, S.; Dojo, H.; Takinami, S.; Suzuki, A. Tetrahedron Lett. 1983,
24, 731−734.
ACS Paragon Plus Environment