CBI 7314
No. of Pages 14, Model 5G
27 March 2015
14
N.D. Reddy et al. / Chemico-Biological Interactions xxx (2015) xxx–xxx
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
and in vivo cytotoxic potential through liposomal formulation, Eur. J. Pharm.
Sci. 50 (2013) 353–365.
726
Acknowledgements
[19] G. Mathew, A. Jacob, E. Durgashivaprasad, N.D. Reddy, M.K. Unnikrishnan,
6b,11b-Dihydroxy-6b,11b-dihydro-7H-indeno[1,2-b]naphtho[2,1-d]furan-7-
one (DHFO), a small molecule targeting NF-kappaB, demonstrates therapeutic
potential in immunopathogenic chronic inflammatory conditions, Int.
Immunopharmacol. 15 (2013) 182–189.
727
728
729
730
731
732
733
734
735
736
737
738
739
740
The authors would like to acknowledge the Department of
Pharmacology, Manipal College of Pharmaceutical Sciences,
Manipal University, Manipal, Karnataka, India for providing the
facilities to carry out the work. For purchase of biochemical
kits and antibodies used in the study, the financial support was
obtained from Department of Science & Technology – Science and
Engineering Research Board (DST-SERB), New Delhi, India through
Extra Mural Research Funding Scheme [Grant Sanction No.: SR/
SO/HS-0282/2012]. The flow cytometer used in the study was
obtained from All India Council for Technical Education through
Research Promotion Scheme (AICTE-RPS) [Grant Sanction No.: 20/
AICTE/RIFD/RPS/(POLICY-1)/64/2013-14] and Modernization and
Removal of Obsolescences (MODROB) [Grant Sanction No.: 9-126/
RIFD/MODROB/Policy-1/2013-14(Pvt.)].
[20] F.E. Ghadi, A.R. Ghara, S. Bhattacharyya, D.K. Dhawan, Selenium as
a
chemopreventive agent in experimentally induced colon carcinogenesis,
World J. Gastrointest. Oncol. 1 (2009) 74–81.
[21] A. Tsunoda, M. Shibusawa, Y. Tsunoda, N. Yokoyama, K. Nakao, M. Kusano, N.
Nomura, S. Nagayama, T. Takechi, Antitumor effect of S-1 on DMH induced
colon cancer in rats, Anticancer Res. 18 (1998) 1137–1141.
[22] Mudgal Jayesh, Mathew Geetha, G. Nayak Pawan, D. Reddy Nitin, Namdeo
Neelesh, R. Kumar Ravilla,
Kantamaneni Chaitanya, R. Chamallamudi
Mallikarjuna, Remedial effects of novel 2,3-disubstituted thiazolidin-4-ones
in chemical mediated inflammation, Chem. Biol. Interact. 210 (2014) 34–42.
[23] K.M. Miranda, M.G. Espey, D.A. Wink, A. Rapid, Simple spectrophotometric
method for simultaneous detection of nitrate and nitrite, Nitric Oxide 5 (2001)
62–71.
[24] B. Schnetger, C. Lehners, Determination of nitrate plus nitrite in small volume
marine water samples using vanadium(III)chloride as a reduction agent, Mar.
Chem. 160 (2014) 91–98.
[25] C. Bonfils, A. Kalita, M. Dubay, L.L. Siu, M.A. Carducci, G. Reid, R.E. Martell, J.M.
Besterman, Z. Li, Evaluation of the pharmacodynamic effects of MGCD0103
from preclinical models to human using a novel HDAC enzyme assay, Clin. Can.
Res. 14 (2008) 3441–3449.
[26] N. Kumar, V.P. Raj, B.S. Jayshree, S.S. Kar, A. Anandam, S. Thomas, P. Jain, A. Rai,
C.M. Rao, Elucidation of structure-activity relationship of 2-quinolone
derivatives and exploration of their antitumor potential through Bax-
induced apoptotic pathway, Chem. Biol. Drug Des. 80 (2012) 291–299.
[27] S. Temple, M.C. Raff, Clonal analysis of oligodendrocyte development in
culture: evidence for a developmental clock that counts cell divisions, Cell 44
(1986) 773–779.
[28] S.J. Elledge, Cell cycle checkpoints: preventing an identity crisis, Science 274
(1996) 1664–1672.
[29] B. Verhoven, R.A. Schlegel, P. Williamson, Mechanisms of phosphatidylserine
exposure, a phagocyte recognition signal, on apoptotic T lymphocytes, J. Exp.
Med. 182 (1995) 1597–1601.
[30] J.G. Walsh, S.P. Cullen, C. Sheridan, A.U. Luthi, C. Gerner, S.J. Martin,
Executioner caspase-3 and caspase-7 are functionally distinct proteases,
Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 12815–12819.
[31] H.J. Brady, G. Gil-Gomez, Bax. The pro-apoptotic Bcl-2 family member, Bax, Int.
J. Biochem. Cell Biol. 30 (1998) 647–650.
[32] S. Shimizu, M. Narita, Y. Tsujimoto, Bcl-2 family proteins regulate the release
of apoptogenic cytochrome c by the mitochondrial channel VDAC, Nature 399
(1999) 483–487.
[33] M. Hanada, C. Aime-Sempe, T. Sato, J.C. Reed, Structure-function analysis of
Bcl-2 protein. Identification of conserved domains important for
homodimerization with Bcl-2 and heterodimerization with Bax, J. Biol.
Chem. 270 (1995) 11962–11969.
[34] Y. Shi, J. Chen, C. Weng, R. Chen, Y. Zheng, Q. Chen, H. Tang, Identification of the
protein-protein contact site and interaction mode of human VDAC1 with Bcl-2
family proteins, Biochem. Biophys. Res. Commun. 305 (2003) 989–996.
[35] C. Weng, Y. Li, D. Xu, Y. Shi, H. Tang, Specific cleavage of Mcl-1 by caspase-3 in
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced
741
References
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
[1] A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, D. Forman, Global cancer
statistics, CA-Cancer J. Clin. 61 (2011) 69–90.
[2] Globocan 2012, International Agency for Research on Cancer. Available at:
2014.
[3] F. Bray, J.S. Ren, E. Masuyer, J. Ferlay, Global estimates of cancer prevalence for
27 sites in the adult population in 2008, Int. J. Cancer 132 (2013) 1133–1145.
[4] M.H. Myers, L.A.G. Ries, Cancer patient survival rates: Seer program results for
10 years of follow-up, CA-Cancer J. Clin. 39 (1989) 21–32.
1 August
[5] E.R. Fearon, B. Vogelstein, A genetic model for colorectal tumorigenesis, Cell 61
(1990) 759–767.
[6] M.F. Fraga, E. Ballestar, M.F. Paz, S. Ropero, F. Setien, M.L. Ballestar, D. Heine-
Suner, J.C. Cigudosa, M. Urioste, J. Benitez, M. Boix-Chornet, A. Sanchez-
Aguilera, C. Ling, E. Carlsson, P. Poulsen, A. Vaag, Z. Stephan, T.D. Spector, Y.-Z.
Wu, C. Plass, M. Esteller, Epigenetic differences arise during the lifetime of
monozygotic twins, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 10604–10609.
[7] H.J. Kim, S.C. Bae, Histone deacetylase inhibitors: molecular mechanisms of
action and clinical trials as anti-cancer drugs, Am. J. Transl. Res. 3 (2011) 166–
179.
[8] A. Taufel, A.Y. Leung, S. Foster, Encyclopedia of Common Natural Ingredients
Used in Food, Drugs and Cosmetics, second ed., John Wiley & Sons Inc, New
York, USA, 1996.
[9] P. De, M. Baltas, F. Bedos-Belval, Cinnamic acid derivatives as anticancer
agents-a review, Curr. Med. Chem. 18 (2011) 1672–1703.
[10] T.L. Lemke, D.A. Williams, V.F. Roche, S.W. Zito, Foye’s Principles of Medicinal
Chemistry, seventh ed., Lippincott Williams & Wilkins, Philadelphia, USA,
2012.
[11] P.W. Finn, M. Bandara, C. Butcher, A. Finn, R. Hollinshead, N. Khan, N. Law, S.
Murthy, R. Romero, C. Watkins, V. Andrianov, R.M. Bokaldere, K. Dikovska, V.
Gailite, E. Loza, I. Piskunova, I. Starchenkov, M. Vorona, I. Kalvinsh, Novel
sulfonamide derivatives as inhibitors of histone deacetylase, Helv. Chim. Acta
88 (2005) 1630–1657.
apoptosis in jurkat leukemia
10500.
T cells, J. Biol. Chem. 280 (2005) 10491–
[12] X. Deng, N.S. Mani, A facile, environmentally benign sulfonamide synthesis in
water, Green Chem. 8 (2006) 835–838.
[36] P.C. Nowell, C.M. Choce, Chromosomes, genes, and cancer, Am. J. Pathol. 125
(1986) 7–15.
[37] D. Hanahan, R.A. Weinberg, The hallmarks of cancer, Cell (2000) 57–70.
[38] J.A. Swenberg, H.K. Cooper, J. Bucheler, P. Kleihues, 1,2-Dimethylhydrazine-
induced methylation of DNA bases in various rat organs and the effect of
pretreatment with disulfiram, Cancer Res. 39 (1979) 465–467.
[39] L.C. Boffa, R.J. Gruss, V.G. Allfrey, Aberrant and nonrandom methylation of
chromosomal DNA-binding proteins of colonic epithelial cells by 1,2-
dimethylhydrazine, Cancer Res. 42 (1982) 382–388.
[40] O.O. Hamiza, M.U. Rehman, M. Tahir, R. Khan, A.Q. Khan, A. Lateef, F. Ali, S.
Sultana, Amelioration of 1,2 dimethylhydrazine (DMH) induced colon
oxidative stress, inflammation and tumor promotion response by tannic acid
in Wistar rats, Asian Pac. J. Cancer Prev. 13 (2012) 4393–4402.
[41] T. Tanaka, Colorectal carcinogenesis: review of human and experimental
animal studies, J. Carcinog. 8 (2009). 5–5.
[42] K. Yoshida, K. Kasama, M. Kitabatake, M. Imai, Biotransformation of nitric
oxide, nitrite and nitrate, Int. Arch. Occup. Environ. Health 52 (1983) 103–115.
[43] N.S. Bryan, M.B. Grisham, Methods to detect nitric oxide and its metabolites in
biological samples, Free Radical Biol. Med. 43 (2007) 645–657.
[44] O. Morteau, S.G. Morham, R. Sellon, L.A. Dieleman, R. Langenbach, O. Smithies,
R.B. Sartor, Impaired mucosal defense to acute colonic injury in mice lacking
cyclooxygenase-1 or cyclooxygenase-2, J. Clin. Invest. 105 (2000) 469–478.
[13] A.S. Reddy, M.S. Kumar, G.R. Reddy, A convenient method for the preparation
of hydroxamic acids, Tetrahedron Lett. 41 (2000) 6285–6288.
[14] S. Talwar, H.V. Jagani, P.G. Nayak, N. Kumar, A. Kishore, P. Bansal, R.R. Shenoy,
K. Nandakumar, Toxicological evaluation of Terminalia paniculata bark extract
and its protective effect against CCl4-induced liver injury in rodents, BMC
Complement Altern. Med. 13 (2013) 127.
[15] M. Fournel, C. Bonfils, Y. Hou, P.T. Yan, M.-C. Trachy-Bourget, A. Kalita, J. Liu, A.-
H. Lu, N.Z. Zhou, M.-F. Robert, J. Gillespie, J.J. Wang, H.l.n. Ste-Croix, J. Rahil, S.
Lefebvre, O. Moradei, D. Delorme, A.R. MacLeod, J.M. Besterman, Z. Li,
MGCD0103,
a novel isotype-selective histone deacetylase inhibitor, has
broad spectrum antitumor activity in vitro and in vivo, Mol. Cancer Ther. 7
(2008) 759–768.
[16] P.G. Nayak, P. Paul, P. Bansal, N.G. Kutty, K.S.R. Pai, Sesamol prevents
doxorubicin-induced
cardiomyoblasts, J. Pharm. Pharmacol. 65 1083–1093.
oxidative
damage
and
toxicity
on
H9c2
[17] A.M. Roy, M.S. Baliga, S.K. Katiyar, Epigallocatechin-3-gallate induces
apoptosis in estrogen receptor-negative human breast carcinoma cells via
modulation in protein expression of p53 and Bax and caspase-3 activation,
Mol. Cancer Ther. 4 (2005) 81–90.
[18] P. Jain, N. Kumar, V.R. Josyula, H.V. Jagani, N. Udupa, C. Mallikarjuna Rao, P.
Vasanth Raj, A study on the role of (+)-catechin in suppression of HepG2
proliferation via caspase dependent pathway and enhancement of its in vitro
878
Please cite this article in press as: N.D. Reddy et al., In vitro and in vivo evaluation of novel cinnamyl sulfonamide hydroxamate derivative against colon