2866
E. Cerrada et al. / Polyhedron 20 (2001) 2863–2867
in acetone (30 ml) was added a solution of HClO4 0.1
M (0.1 mmol, 1 ml). After 1 h of stirring at reflux
temperature Na2SO4 was added and filtered through
Celite. The resulting solution was concentrated and the
addition of diethyl ether (20 ml) gave white solids (3b,
4b) which were filtered off and dried in vacuo. Yields:
3b, 86%, 4b, 75%. IR(film): n(P.O)=1143 cm−1 (3b),
0.0450, vR=0.1174 for all data. In the final Fourier
synthesis the electron density fluctuates in the range
−3
,
1.077 to −0.957 e A
.
4. Supplementary material
1
1145 cm−1 (4b). H-NMR (CDCl3): 3b, l=7.84 (m,
Crystallographic data for the structural analysis have
been deposited with the Cambridge Crystallographic
Data Centre, CCDC no. 163479 for compound 4b
(excluding structure factors). Copies of this information
may be obtained free of charge from The Director,
CCDC, 12 Union Road, Cambridge CB2 1EZ, UK
(Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.
ac.uk or www: http://www.ccdc.cam.ac.uk)
1H), 7.79 (m, 1H), 7.62–7.13 (m, 11H), 7.1 (m, 1H),
0.97 (s, JSnꢀH=87 Hz, 6H, CH3), 4b l=8 (m, 1H),
7.6–7.44 (m, 11H), 7.3 (m, 1H), 6.8 (m, 1H), 1.28 (s,
t
J
SnꢀH=114 Hz, 18H, Bu). 31P-NMR (CDCl3) 3a, l=
39.5 ppm (s) (JSnꢀP=49 Hz), 4a, l=45.6 ppm (s)
(JSnꢀP=79 Hz). 3b C20H20O5PSClSn (557.57): Calc. C,
43.05; H, 3.6; S, 5.75; Found: C, 43.5; H, 3.2; S, 5.2; 4b
C26H32O5PSClSn (605.86): Calc. C, 51.5; H, 5.3; S, 5.2;
Found: C, 51.9; H, 5.2; S, 5.6. LM (ohm−1 cm2 mol−1
=82 (3b), 90 (4b).
)
Acknowledgements
3.6. Crystallography
We thank the Spanish Directorate General for
Higher Education and Scientific Research Grant PB98-
0542 for financial support. M.B.H. thanks the Engi-
neering and Physical Sciences Research Council for
support of the X-ray facilities.
Single crystals were grown by diffusing diethyl ether
into an acetone solution of complex [SntBu2(OPPh2C6-
H4S)]ClO4 (4b) at low temperature, and mounted in
inert oil.
3.7. Crystal data and data collection parameters
C26H32ClO7PSSn, M=673.69, monoclinic, a=
References
,
10.385(2), b=13.0960(10), c=10.8890(10) A, i=
3
,
97.060(12)°, U=1469.7(3) A , T=293K, space group
[1] E. I. Stiefel, K. Matsumoto, Tansition Metal Sulfur Chemistry,
ACS Symposium Series, 653, American Chemical Society, Wash-
ington DC, 2 (1995).
[2] (a) E.S. Raper, Coord. Chem. Rev. 153 (1996) 19;
(b) E.S. Raper, Coord. Chem. Rev. 165 (1997) 475.
[3] B. Krebs, G. Henkel, Angew. Chem. Int. Ed. Engl. 30 (1991)
769.
[4] J.R. Dilworth, N. Wheatley, Coord. Chem. Rev. 199 (2000) 89.
[5] D. Morales, R. Poli, P. Richard, J. Andrieu, E. Collange, J.
Chem., Dalton Trans. (1999) 867.
[6] J.R. Dilworth, A.J. Hutson, S. Morton, M. Harman, M.B.
Hursthouse, J. Zubieta, C.M. Archer, J.D. Kelly, Polyhedron 11
(1992) 2151.
P21, graphite monochromated Mo Ka radiation u=
0.71069A, Z=2, Dcalc=1.522 Mg m−3, F(000)=684,
,
colourless prism with dimensions 0.20×0.20×0.18
mm, v=1.126 mm−1; Delf Instruments FAST TV area
detector diffractometer positioned at the window of a
rotating-anode generator, following procedures de-
scribed elsewhere [28], q range for data collection 1.88
to 24.95°, −115h511, −145k511, −105l512;
5342 reflections collected, 3936 independent (Rint
=
0.074).
[7] J.R. Dilworth, D.V. Griffiths, S.J. Parrott, Y. Zheng, J. Chem.
Soc., Dalton Trans. (1997) 2931.
[8] S-T. Liu, D-R. Hou, T. Chen, M-C. Chen, S.-M. Peng,
Organomet 14 (1995) 1529.
3.8. Structure solution and refinement
The data processing solution was done using the
direct methods of SHELXS 86 [29], the structure was
refined by full-matrix least squares on F2o, using the
program SHELXL 93 [30]. All data used were corrected
for Lorentz-polarisation factors, and subsequently for
absorption using the program DIFABS [31]. The non-hy-
drogen atoms were refined with anisotropic thermal
parameters. The hydrogen atoms from the water
molecules have not been found the other hydrogen were
included in idealised positions. Refinement proceeds to
R=0.0429, vR=0.1169 and goodness of fit on F2
1.112 for 340 parameters and 1 restraint, and R=
[9] J.R. Dilworth, J.R. Miller, N. Wheatley, M.J. Baker, J.G. Sunle,
Chem. Commun. (1995) 1579.
[10] J.R. Dilworth, C. Lu, J.R. Miller, Y. Zheng, J. Chem. Soc.,
Dalton Trans. (1995) 1957.
[11] J.S. Kim, J.H. Reibenspies, M.Y. Darensbourg, J. Am. Chem.
Soc. 118 (1996) 4115.
[12] J.R. Dilworth, A.J. Hutson, J. Zubieta, Q. Chen, Trans. Met.
Chem. 19 (1994) 61.
[13] E.J. Ferna´ndez, M.B. Hursthouse, M. Laguna, R. Terroba, J.
Organomet. Chem. 574 (1999) 207.
[14] J. Aznar, E. Cerrada, M.B. Hursthouse, M. Laguna, C. Pozo,
M.P. Romero, J. Organomet. Chem. 622 (2001) 280.
[15] P. Perez-Lourido, J. Romero, J. Garc´ıa-Vazquez, A. Sousa, K.P.
Maresca, D.J. Rose, J. Zubieta, Inorg. Chem. 37 (1998) 3331.