(2 H, m, ArH), 7.70–7.54 (3 H, m, ArH), 7.27–7.24 (0.7 H, m,
C(3)H, partly obscured by solvent peak), 7.21 (0.3 H, dd, J 5.1,
1.5, C(3)H), 7.18 (1 H, dd, J 5.1, 1.1, thienyl-C(5)H), 6.98 (0.3
H, dd, J 5.1, 3.7, thienyl-C(4)H), 6.94 (0.7 H, dd, J 5.1, 3.7,
thienyl-C(4)H), 6.90 (0.3 H, dt, J 3.7, 1.1, thienyl-C(3)H),
6.68 (0.7 H, dt, J 3.3, 1.1, thienyl-C(3)H), 4.40 (0.3 H, m,
C(1)H), 4.34 (0.7 H, m, C(1)H), 4.05 (0.7 H, q, J 3.9, C(4)H),
3.79 (0.3 H, t, J 7.7, C(4)H), 3.23 (0.7 H, s, OH), 3.09 (0.3 H, s,
OH), 2.36–2.25 (0.7 H, m, CH2), 2.10–2.00 (1 H, m, CH2), 1.86–
1.69 (2.3 H, m, CH2); peak 2 (3-thienyl-cis-2e, contaminated
with a small amount of 4): δH 7.94–7.90 (2 H, m, ArH), 7.68–
7.54 (3 H, m, ArH), 7.33 (1 H, dd, J 4.8, 2.9, thienyl-C(5)H),
7.20 (1 H, d, J 1.8, C(3)H), 7.06 (1 H, ddd, J 2.9, 1.5, 0.7,
thienyl-C(2)H), 6.98 (1 H, dd, J 5.1, 1.5, thienyl-C(4)H), 4.37
(1 H, ddd, J 4.0, 2.6, 1.1, C(1)H), 3.62 (1 H, t, J 7.7, C(4)H),
2.28 (br s, OH), 2.05 (1 H, dq, J 13.9, 3.3, CH2), 2.00–1.91 (3 H,
m, CH2), 1.60 (1 H, m, CH2); peak 3 (3-thienyl-trans-2e):
δH 7.98–7.92 (2 H, m, ArH), 7.70–7.56 (3 H, m, ArH), 7.30
(1 H, dd, J 4.8, 2.9, thienyl-C(5)H), 7.25 (1 H, d, J 4.4, C(3)H),
6.86 (1 H, dd, J 4.9, 1.3, thienyl-C(4)H), 6.73 (1 H, m, thienyl-
C(2)H), 4.39 (1 H, t, J 4.0, C(1)H), 3.85 (1 H, q, J 4.5, C(4)H),
2.50 (1 H, br s, OH), 2.23 (1 H, m, CH2), 1.84–1.75 (1 H, m,
CH2), 1.72–1.61 (2 H, m, CH2); peaks 4 and 5: 3a and 3b
respectively.
gave a crude product mixture (100 mg). Separation on a silica
gel column (pentane–EtOAc 1 : 1) first gave diphenyl sulfone
1
(8%), then a pool (78 mg) of 3 and 4 (82 : 18, H NMR). This
corresponds to a 51% yield of 3 and an 11% yield of 4. The
retention times in analytical HPLC (pentane–EtOAc 5 : 1) were
24.0 (4), 34.0 (3a) and 36.8 min (3b); the ratio 3a : 3b was
44 : 56.
2-Fluoro-2-phenylsulfonylcyclohex-3-enol (4)
δH (salient signals only): 7.97 (2 H, d, J 8.1, ArH), 6.41 (1 H,
ddt, J 10.2, 4.2, 2.9, olefinic H), 5.50 (1 H, ddt, J 9.8, 4.6, 2.2,
olefinic H), 4.56 (1 H, ddd, J 12.6, 9.5, 3.3, C(1)H), 2.75 (1 H,
br s, OH); δC (JC–F): 142.1 (J 8.4), 134.8, 134.5 ?, 130.6 (J 1.5),
129.1, 117.7 (J 19.8, C(3)), 103.7 (J 219.7, C(2)), 66.1 (J 17.5,
C(1)), 26.4, 23.4 (J 3.0); δF: Ϫ152.3 (m)
Acknowledgements
We thank Ms Charlotte Mattsson for aid in the preparation of
2a (Scheme 2) and Mr Suresh Gohil (SLU, Uppsala) for
running mass spectra.
References
1 (a) B. Rickborn, in Comprehensive Organic Chemistry, eds. B. M.
Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 3, p. 733;
(b) K. Maruoka, N. Murase, R. Bureau, T. Ooi and H. Yamamoto,
Tetrahedron, 1994, 50, 3663.
2 T. Durst and K.-C. Tin, Tetrahedron Lett., 1970, 2369; D. F. Tavares,
R. E. Estep and M. Blezard, Tetrahedron Lett., 1970, 2373.
3 J.-E. Bäckvall, A. M. Ericsson, S. K. Juntunen, C. Nájera and
M. Yus, J. Org. Chem., 1993, 58, 5221.
4 G. A. Olah, R. Krishnamurti and G. K. S. Prakash, in
Comprehensive Organic Chemistry, eds. B. M. Trost and I. Fleming,
Pergamon Press, Oxford, 1991, vol. 3, p. 293.
5 A. Ouédraogo, M. T. Phan Viet, J. K. Saunders and J. Lessard,
Can. J. Chem., 1987, 65, 1761 and references given therein.
6 D. M. Wieland and C. R. Johnson, J. Am. Chem. Soc., 1971, 93,
3047; J. P. Marino and N. Hatanaka, J. Org. Chem., 1979, 44, 4467;
J. A. Marshall, Chem. Rev., 1989, 89, 1503.
4-Fluoro-2-phenylsulfonylcyclohex-2-enol (3a and 3b)
Compounds 3a and 3b were obtained (9% yield) as a 4 : 1 mix-
ture of stereoisomers in the synthesis of 2a from 1; this mixture
was used to obtain 13C NMR data. The isomers were separated
by preparative HPLC; δH for 3a (major isomer): 7.92 (2 H, d,
J 7.5, ArH), 7.68 (1 H, tt, J 7.5, 1.8, ArH), 7.58 (2 H, t, J 7.7,
ArH), 7.03 (1 H, ddd, J 10.6, 2.2, 1.1, C(3)H), 5.12 (1 H, dddd,
J 46.9, 9.9, 5.5, 2.2, C(4)H), 4.36 (1 H, m, C(1)H), 3.10 (1 H, t,
J 2.0, OH), 2.18–1.98 (3 H, m, CH2), 1.67–1.55 (1 H, m, CH2);
δC for 3a (JC–F): 144.1 (J 8.4, C(2)), 138.1 (J 23.7, C(3)), 138.1
(ArC), 133.8 (ArC), 129.2 (ArC), 128.0 (ArC), 86.9 (J 171.7,
C(4)), 61.1 (J 1.5, C(1)), 27.9 (J 9.9, C(6)), 23.2 (J 18.3, C(5));
δF for 3a: Ϫ47.5 (dm, J 45.8); retention time in analytical HPLC
(pentane–EtOAc 5 : 1), 34.0 min; m/z 256 (Mϩ, 7%), 210 (24),
125 (33), 115 (100), 77 (43); m/z 256.0532; C12H13O3FS requires
256.0569.
7 D. R. Tueting, A. M. Echavarren and J. K. Stille, Tetrahedron, 1989,
45, 979.
8 G. A. Olah, J. A. Olah and T. Ohyama, J. Am. Chem. Soc., 1984, 106,
5284.
δH for 3b (minor isomer): 7.92 (2 H, d, J 8.2, ArH), 7.68 (1 H,
tt, J 7.7, 1.6, ArH), 7.59 (2 H, t, J 7.7, ArH), 7.05 (1 H, t, J 4.6,
C(3)H), 5.17 (1 H, dq, J 46.3, 4.1, C(4)H), 4.37 (1 H, quintet,
J 3.4, C(1)H), 3.11 (1 H, dd, J 2.2, 1.5, OH), 2.16 (1 H,
dm, J 33.0, C(5)H), 1.98–1.77 (3 H, m, CH2); δC for 3b (JC–F):
146.0 (J 9.9, C(2)), 137.9 (ArC), 134.7 (J 19.1, C(3)), 133.8
(ArC), 129.2 (ArC), 128.0 (ArC), 83.3 (J 168.6, C(4)), 61.6
(J 2.3, C(1)), 25.8 (J 1.5, C(6)), 23.8 (J 20.3, C(5)); δF for 3b:
Ϫ44.3 (dddt, J 45.8, 33.6, 16.8, 3.8); retention time in analytical
HPLC (pentane–EtOAc 5 : 1), 36.8 min.
9 C. C. Price, Org. React. (N. Y.), 1946, 3, 1.
10 For a recent example, see W. Pan, M. Balci and P. B. Shevlin, J. Am.
Chem. Soc., 1997, 119, 5035.
11 L. I. Belen’kii, A. P. Yakubov and I. A. Bessonova, J. Org. Chem.
USSR, 1977, 13, 329; translated from Zh. Org. Khim., 1977, 13, 364.
12 S. K. Taylor, D. L. Clark, K. L. Heinz, S. B. Schramm, C. D.
Westermann and K. K. Barnell, J. Org. Chem., 1983, 48, 592.
13 X. Creary, Chem. Rev., 1991, 91, 1625.
14 F. G. Bordwell and G. A. Pagani, J. Am. Chem. Soc., 1975, 97, 118;
F. G. Bordwell and T. G. Mecca, J. Am. Chem. Soc., 1975, 97, 123;
F. G. Bordwell and T. G. Mecca, J. Am. Chem. Soc., 1975, 97, 127;
F. G. Bordwell, P. F. Wiley and T. G. Mecca, J. Am. Chem. Soc.,
1975, 97, 132.
15 Y. Taniguchi, J. Inanaga and M. Yamaguchi, Bull. Chem. Soc. Jpn.,
1981, 54, 3229.
16 N. A. Meanwell and C. R. Johnson, Synthesis, 1982, 283.
17 H. J. Monteiro and A. L. Gemal, Synthesis, 1975, 437.
18 L. A. Paquette and R. V. C. Carr, Org. Synth., 1986, 64, 157, and
references therein.
4-Fluoro-2-phenylsulfonylcyclohex-2-enol (3)
Compound 3 was more efficiently prepared when 1 (118 mg,
0.50 mmol) in DCM (1 cm3) was added to a mixture of BF3ؒ
OEt2 (0.09 cm3, 0.75 mmol) and N-ethyldiisopropylamine
(32 mg, 0.25 mmol) in DCM (1 cm3, 22 ЊC). Work-up after 18 h
2054
J. Chem. Soc., Perkin Trans. 1, 2001, 2051–2054