Journal of the American Chemical Society
Page 4 of 5
Hexn
Me 54 (40:60)
Et 61 (>99:1)
Me 42 (9:91)
n.d.
Corresponding Author
5a
5b
5c
1
2
3
4
5
6
7
8
Hexn
Ar
n.d.
63 (15:85)d
e-mail: itonks@umn.edu
Funding Sources
Ar = p-MeOPh
The authors declare no competing financial interests.
5d
5e f
5f
Et
Et
Et
51 (>99:1)
40 (>99:1)
0
70 (71:29)e
n.d.
Ar
ACKNOWLEDGMENT
Ar = p-MeOPh
Financial support was provided by the University of
Minnesota (start-up funds) and the National Institutes of
Health (1R35GM119457). Equipment for the Chemistry
Department NMR facility were supported through a grant
from the National Institutes of Health (S10OD011952)
with matching funds from the University of Minnesota.
9
tBu
n.d.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
aLoading of [py2TiCl2NPh]2 and reaction yields with respect to
PhNNPh. bIsolated as the ketone product after hydrolysis. See SI for
details. cDetermined by 1H NMR analysis of the crude reaction
d
e
mixture. 96 : 4 ratio of cis : trans cyclopropane product. 74 : 26
f
ratio of cis : trans cyclopropane product. Reaction run in neat
REFERENCES
alkene.
(1) (a) Sandhu, J.S.; Sain, B. Heterocycles 1987, 26, 777. (b)
Amslinger, S. Chem. Med. Chem. 2010, 5, 351-356. (c) Carson,
C.A.; Kerr, M.A. Chem. Soc. Rev. 2009, 38, 3051-3060. (d) Tang,
P.; Qin, Y. Synthesis 2012, 44, 2969-2984. (e) Okajima, T. Nuc.
Acids. Symp. Series 2006, 51, 215-216. (f) Kumar, A.K. Pharm. and
Pharm. Sci. 2013, 5, 467-472.
(2) For a review of hydroamination, see: Müller, T.E.; Hultzsch,
K.C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795-
3892.
(3) (a) Ruck, R.T.; Zuckermann, R.L.; Krska, S.W.; Bergman, R.
G. Angew. Chem., Int. Ed. 2004, 43, 5372-5374. (b) Ruck, R.T.;
Bergman, R.G. Organometallics 2004, 23, 2231-2233. (c) Basuli,
F.; Aneetha, H.; Huffman, J.C.; Mindiola, D.J. J. Am. Chem. Soc.
2005, 127, 17992-17993. (d) Aneetha, H.; Basuli, F.; Bollinger, J.;
Huffman, J.C.; Mindiola, D.J. Organometallics 2006, 25, 2402-
2404. (e) Basuli, F.; Wicker, B.; Huffman, J.C.; Mindiola, D.J. J.
Organometallic Chem. 2011, 696, 235-243. For a review on
titanium carboamination, see (f) Mindiola, D.J. Comments on Inorg.
Chem. 2008, 29, 73-92.
(4) (a) Kajita, Y.; Matusbara, S.; Kurahashi, T. J. Am. Chem. Soc.
2008, 130, 6058-6059. (b) Yoshino, Y.; Kurahashi, T.; Matsubara,
S. J. Am. Chem. Soc. 2009, 131, 7494-7495. (c) Maizuru, N.; Inami,
T.; Kurahashi, T.; Matsubara, S. Org. Lett. 2011, 13, 1206-1209. (d)
Zavesky, B. P.; Babij, N.R.; Wolfe, J.P. Org. Lett. 2014, 16, 4952-
4955. (e) Patil, N.T.; Kavthe, R.D.; Yamamoto, Y. Adv. Het. Chem.
2010, 101, 75-95. (f) Chem, S.R.; Fuller, P.H. Chem. Soc. Rev.
2007, 36, 1153-1160.
(5) Rh-catalyzed alkyne carboaminations are two-step reactions
involving Cu-catalyzed alkyne/azide cycloaddition followed by Rh-
catalyzed iminovinylidene formation: Horneff, T.; Chuprakov, S.;
Chernyak, N.; Gevorgyan, V.; Fokin, V.V. J. Am. Chem. Soc. 2008,
130, 14972-14974.
(6) Piou, T.; Rovis, T. Nature 2015, 527, 86-90.
(7) Gilbert, Z.W.; Hue, R.J.; Tonks, I.A. Nat. Chem. 2016, 8, 63-
68.
(8) Odom, A.L.; McDaniel, T.J. Acc. Chem. Res. 2015, 48, 2822-
2833.
(9) McGrane, L.P.; Jensen, M.; Livinghouse, T. J. Am. Chem.
Soc. 1992, 114, 5459-5460.
(10) Only ethylene has been observed: Polse, J.L.; Andersen,
R.A.; Bergman, R.G. J. Am. Chem. 1998, 120, 13405-13414.
(11) Agapie, T.; Labinger, J.A.; Bercaw, J.E. J. Am. Chem. Soc.
2007, 129, 14281-14295.
(12) (a) Mann, G.; Baranano, D.; Hartwig, J.F.; Rheingold, A.L.;
Guzei, I.A. J. Am. Chem. Soc. 1998, 120, 9205-9219. (b) Low, J.J.;
Goddard, W.A. Organometallics 1986, 5, 609-622.
(13) Suzuki, K.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 1996, 118,
8729-8730.
As was the case in the intramolecular multicomponent
couplings, subtle structural changes in intermolecular
heterocouplings also lead to dramatic shifts in
selectivity between β-H elimination/abstraction and
α,γ-coupling products. This selectivity shift is apparent
in the reaction of 4-allylanisole with internal alkynes:
reaction with 3-hexyne gives a 71 : 29 ratio of 6d : 7d,
while reaction with 2-butyne inverts the selectivity and
1
yields a 15 : 85 ratio of 6c : 7c by H NMR analysis.
The cis:trans selectivity of the cyclopropanes also
varies heavily between the 3-hexyne product 7d
(74:26) and 2-butyne product 7c (96:4), which has
similarly been observed in Kulinkovich-type
cyclopropanation reactions.14
In addition to unsubstituted linear terminal alkenes,
terminal alkenes bearing 2° groups are also competent
for catalysis. 4-Vinylcyclohex-1-ene undergoes
reaction to give low yields of the product with
exclusive reactivity at the terminal alkene. Bulkier
alkenes, such as 3,3-dimethylbut-1-ene, fail to react.
In conclusion, we have demonstrated the first examples
of a three-component oxidative alkyne carboamination,
generating either α,β-unsaturated imines or α-
functionalized cyclopropanes. Preliminary mechanistic
studies indicate that these Ti-catalyzed reactions
proceed through a common azametallacyclohexene
intermediate. Somewhat remarkably, both intra- and
intermolecular reactions proceed in moderate to good
yields and selectivities despite the large potential for
the occurrence of undesired competitive processes such
as alkyne homocoupling. We are currently examining
new catalyst classes to further understand and increase
control over the rate and selectivity of these unique
transformations, as well as further pursuing new Ti
redox catalytic reactions promoted by diazene
oxidants.
Supporting Information. Full experimental
procedures, characterization data and spectra are available
in the Supporting Information. This material is available
(14) Kulnikovich, O.G.; de Meijere, A. Chem. Rev. 2000, 100,
2789-2834.
ACS Paragon Plus Environment