12696
J. Am. Chem. Soc. 2001, 123, 12696-12697
Scheme 1
Asymmetric Synthesis of r-Amino Acids via
Cinchona Alkaloid-Catalyzed Kinetic Resolution of
Urethane-Protected r-Amino Acid
N-Carboxyanhydrides
Jianfeng Hang, Shi-Kai Tian, Liang Tang, and Li Deng*
Department of Chemistry, Brandeis UniVersity
Waltham, Massachusetts 02454-9110
Table 1. Kinetic Resolution of UNCA 2a with Cinchona
ReceiVed August 9, 2001
Alkaloidsa,b
Acyl-transfer reactions use cheap reagents to transform readily
available starting materials into useful and easily purified products.
These characteristics, in combination with high enantioselectivity,
enable acyl-transfer reactions catalyzed by enzymes such as
lipases and esterases to become highly valuable methods for
asymmetric synthesis.1 The development of synthetic catalysts
to mimic lipases/esterases with the goal of further expanding the
scope of asymmetric acyl transfer catalysis is of both conceptual
and practical significance for asymmetric catalysis.2 Although
effective phosphorus and nitrogen synthetic catalysts for the
kinetic resolution of racemic alcohols have emerged,3,4 efforts to
develop small molecule-catalyzed kinetic resolutions of racemic
carbonyl derivatives have met with limited success despite their
great potential in asymmetric synthesis.5 We report here an
exceedingly general and highly enantioselective kinetic resolution
of urethane-protected R-amino acid N-carboxyanhydrides (UNCA)
that generates optically active R-amino acid derivatives suitable
for further synthetic elaboration such as peptide synthesis.
Encouraged by our discovery of modified cinchona alkaloids
as efficient catalysts for asymmetric alcoholysis of meso and
racemic cyclic anhydrides,6-8 we became interested in the kinetic
resolution of urethane-protected R-amino acid N-carboxyanhy-
drides (UNCA, 2) via cinchona alkaloid-catalyzed alcoholysis
(Scheme 1). UNCAs (2) can be easily prepared from the readily
available racemic amino acids (1).9 Their alcoholysis generates
a The reaction was performed with 2a (0.1 mmol) in ether (7.0 mL).
b See Supporting Information for experimental details. c Selectivity
factor, s ) kf/ks ) ln[1 - C(1 + ee)]/ln[1 - C(1 - ee)], where ee is
the percent enantiomeric excess of 3a and C is the conversion. d 20
mol % catalyst was used.
the carbamate-protected amino ester 3 and CO2. When suitably
protected, amino ester 3 will not interfere with the cinchona
alkaloid-catalyzed alcoholysis. Furthermore, the unreacted enan-
tiomerically enriched UNCA (2) can be hydrolyzed to protected
amino acid (4) (Scheme 1). The resulting mixture of the basic
amine catalyst, the acidic amino acid (4) and the neutral amino
ester (3), can be separated using simple extractive procedures to
give 3, 4, and the recovered amine catalyst in desired chemical
and optical purity.
We initially utilized racemic N-Cbz-phenylalanine NCA (2a)
as a model substrate. Reaction of 2a with methanol (0.55 equiv)
in ether at room temperature with (DHQD)2AQN (10 mol %)
and molecular sieves (4 Å) afforded ester 3a in 80% ee at 42%
conversion, corresponding to a selectivity factor (s) of 16 for the
kinetic resolution (entry 1, Table 1). Importantly, the enantiose-
lectivity of the kinetic resolution could be dramatically improved
at low temperature and, at -60 °C, reached a level (s ) 79, entry
2, Table 1) comparable to that of an enzyme-catalyzed resolution.
Further catalyst screening studies revealed that (DHQD)2AQN
is the most effective catalyst. Notably, high enantioselectivity is
also achieved with the monocinchona alkaloids, DHQD-PHN, and
quinidine (entries 3, 4, Table 1). Interestingly, under the same
conditions, other related amines such as (DHQD)2PYR, (DHQD)2-
PHAL, DHQD-MEQ, DHQD-CLB, and quinuclidine afforded
only minuscule conversions (1-4%). Subsequently, a preparative
scale kinetic resolution of 2a (4.0 mmol) is found to proceed
cleanly to allow the isolation of ester 3a and acid 4a in nearly
quantitative yields and high ee and the full recovery of the catalyst
(Table 2) using an extractive procedure.10 The recovered catalyst
was reused for another reaction cycle, showing no deterioration
in catalytic activity and selectivity (Table 2).
* To whom correspondence should be addressed.
(1) (a) Hæffner, F.; Norin, T. Chem. Pharm. Bull. 1999, 47, 591. (b) Faber,
K.; Biotransformations in Organic Chemistry, 3rd ed.; Springer-Verlag: New
York, 1997. (c) Wong, C. H.; Whitesides, G. M. Enzymes in Synthetic Organic
Chemistry; Elsevier Science Ltd: Oxford, 1994.
(2) (a) Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. AdV. Synth. Catal. 2001,
343, 5. (b) Spivey, A. C.; Maddaford, A.; Redgrave, A. J. Org. Prep. Proced.
Int. 2000, 32, 331.
(3) (a) Vedejs, E.; Daugulis, O. J. Am. Chem. Soc. 1999, 121, 5813. (b)
Vedejs, E.; Daugulis, O. J.; Diver, S. T. J. Org. Chem. 1996, 61, 430. (c)
Vedejs, E.; Mackay, J. A. Org. Lett. 2001, 3, 535.
(4) (a) Ruble, J. C.; Tweddell, J.; Fu, G. C. J. Org. Chem. 1998, 63, 2794.
(b) Ruble, J. C.; Latham, H. A.; Fu, G. C. J. Am. Chem. Soc. 1997, 119,
1492. (c) Bellemin-Laponnaz, S.; Tweddell, J.; Ruble, J. C.; Breitling, F. M.;
Fu, G. C. Chem. Commun. 2000, 1009. (d) Spivey, A. C.; Fekner, T.; Spey,
S. E. J. Org. Chem. 2000, 65, 3154. (e) Oriyama, T.; Hori, Y.; Imai, K.;
Sasaki, R. Tetrahedron Lett. 1996, 37, 8543. (f) Sano, T.; Imai, K.; Ohashi,
K.; Oriyama, T. Chem. Lett. 1999, 265. (g) Jarvo, E. R.; Copeland, G. T.;
Papaioannou, N.; Bonitatebus, P. J., Jr.; Miller, S. J. J. Am. Chem. Soc. 1999,
121, 11638. (h) Miller S. J.; Copeland, G. T.; Papaioannou, N.; Horstmann,
T. E.; Ruel, E. M. J. Am. Chem. Soc. 1998, 120, 1629. (i) Copeland, G. T.;
Jarvo, E. R.; Miller, S. J. J. Org. Chem. 1998, 63, 6784. (j) Kawabata, T.;
Nagato, M.; Takasu, K.; Fuji, K. J. Am. Chem. Soc. 1997, 119, 3169.
(5) (a) Liang, J.; Ruble, J. C.; Fu, G. C. J. Org. Chem. 1998, 63, 3154. (b)
Narasaka, K.; Kanai, F.; Okudo, M.; Miyoshi, N. Chem. Lett. 1989, 1187.
(6) (a) Chen, Y.; Tian, S.-K.; Deng, L. J. Am. Chem. Soc. 2000, 122, 9542.
(b) Chen, Y.; Deng, L. J. Am. Chem. Soc. 2001, 123, 11302. (c) Choi, C.;
Tian, S.-K.; Deng, L. Synthesis 2001, 1737.
(7) For catalytic desymmetrizations of cyclic anhydrides with natural
cinchona alkaloids, see: (a) Hiratake, J.; Yamamoto, Y.; Oda, J. J. Chem.
Soc., Chem Commun. 1985, 1717. (b) Hiratake, J.; Inagaki, M.; Yamamoto,
Y.; Oda, J. J. Chem. Soc., Perkin. Trans. 1 1987, 1053. (c) Bolm, C.; Schiffers,
I.; Dinter, C. L.; Gerlach, A. J. Org. Chem. 2000, 65, 6984.
(8) For a recent review of catalytic desymmetrizations of cyclic anhydrides,
see: Spivey, A. C.; Andrews, B. I. Angew. Chem., Int. Ed. 2001, 40, 3131.
(9) (a) Fuller, W. D.; Goodman, M.; Naider, F. R.; Zhu, Y. F. Biopolymers
(Pept. Sci.) 1996, 40, 183. (b) Daly, W. H.; Poche´, D. Tetrahedron Lett. 1988,
29, 5859.
10.1021/ja011936q CCC: $20.00 © 2001 American Chemical Society
Published on Web 11/27/2001