10.1002/anie.201916712
Angewandte Chemie International Edition
COMMUNICATION
R. K. C. Yamijala, K. Tao, L. J. W. Shimon, D. S. Eisenberg, M. R.
Sawaya, B. M. Wong, E. Gazit, Nat. Catal. 2019, 2, 977-985; l) O. V.
Makhlynets, I. V. Korendovych, Nat. Catal. 2019, 2, 949-950.
a) C. M. Rufo, Y. S. Moroz, O. V. Moroz, J. Stöhr, T. A. Smith, X. Hu, W.
F. DeGrado, I. V. Korendovych, Nat. Chem. 2014, 6, 303; b) O. V.
Makhlynets, P. M. Gosavi, I. V. Korendovych, Angew. Chem. Int. Ed.
2016, 55, 9017-9020; c) M. Lee, T. Wang, O. V. Makhlynets, Y. Wu, N.
F. Polizzi, H. Wu, P. M. Gosavi, J. Stöhr, I. V. Korendovych, W. F.
DeGrado, M. Hong, Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 6191-6196.
Z. Lengyel, C. M. Rufo, Y. S. Moroz, O. V. Makhlynets, I. V. Korendovych,
ACS Catal. 2018, 8, 59-62.
This work was supported by the NIH (Grants No. GM119634,
GM103521), the CRDF (Grant No. OISE-18-63891-0) and the
Alexander von Humboldt Foundation. We thank Prof. Nancy
Totah for providing access to a GC instrument. We thank Dr. Boris
Dzikovski for help with acquisition of the EPR spectra. We thank
Dr. Min Chul Kim and Ngoc T. Huynh for assistance in peptide
purification and GC analysis.
[4]
[5]
[6]
Keywords: self-assembly, peptide, amyloid, catalysis,
cyclopropanation.
a) Q. Wang, Z. Yang, M. Ma, C. K. Chang, B. Xu, Chem. Eur. J. 2008,
14, 5073-5078; b) H. Atamna, K. Boyle, Proc. Natl. Acad. Sci. U.S.A.
2006, 103, 3381-3386.
[1]
[2]
a) M. Boncheva, G. M. Whitesides, MRS Bull. 2011, 30, 736-742; b) I. W.
Hamley, Interface Focus 2017, 7, 20170062.
[7]
a) T. Hayashi, M. Tinzl, T. Mori, U. Krengel, J. Proppe, J. Soetbeer, D.
Klose, G. Jeschke, M. Reiher, D. Hilvert, Nat. Catal. 2018, 1, 578-584; b)
H. N. C. Wong, M. Y. Hon, C. W. Tse, Y. C. Yip, J. Tanko, T. Hudlicky,
Chem. Rev. 1989, 89, 165-198; c) A. J. Burke, C. S. Marques, N. J.
Turner, G. J. Hermann, Active Pharmaceutical Ingredients in Synthesis:
Catalytic Processes in Research and Development, John Wiley & Sons,
2018.
a) A. C. Mendes, E. T. Baran, R. L. Reis, H. S. Azevedo, WIREs
Nanomed. Nanobi. 2013, 5, 582-612; b) I. Cherny, E. Gazit, Angew.
Chem. Int. Ed. 2008, 47, 4062-4069; c) X. Du, J. Zhou, J. Shi, B. Xu,
Chem. Rev. 2015, 115, 13165-13307; d) N. Habibi, N. Kamaly, A. Memic,
H. Shafiee, Nano Today 2016, 11, 41-60; e) A. Lupas, Trends Biochem.
Sci 1996, 21, 375-382; f) X. Zhao, F. Pan, J. R. Lu, Prog. Nat. Sci - Mater.
Int. 2008, 18, 653-660; g) M. A. Dolan, P. N. Basa, O. Zozulia, Z. Lengyel,
R. Lebl, E. M. Kohn, S. Bhattacharya, I. V. Korendovych, ACS Nano 2019,
13, 9292-9297.
[8]
[9]
O. F. Brandenberg, R. Fasan, F. H. Arnold, Curr. Opin. Biotechnol. 2017,
47, 102-111.
a) G. Blauer, N. Sreerama, R. W. Woody, Biochemistry 1993, 32, 6674-
6679; b) M. Nagai, N. Mizusawa, T. Kitagawa, S. Nagatomo, Biophys.
Rev. 2018, 10, 271-284; c) M. Nagai, Y. Nagai, K. Imai, S. Neya, Chirality
2014, 26, 438-442; d) I. V. Korendovych, A. Senes, Y. H. Kim, J. D. Lear,
H. C. Fry, M. J. Therien, J. K. Blasie, F. A. Walker, W. F. DeGrado, J.
Am. Chem. Soc. 2010, 132, 15516-15518.
[3]
a) O. Zozulia, M. A. Dolan, I. V. Korendovych, Chem. Soc. Rev. 2018,
47, 3621-3639; b) Z. S. Al-Garawi, B. A. McIntosh, D. Neill-Hall, A. A.
Hatimy, S. M. Sweet, M. C. Bagley, L. C. Serpell, Nanoscale 2017, 9,
10773-10783; c) M. P. Friedmann, V. Torbeev, V. Zelenay, A. Sobol, J.
Greenwald, R. Riek, PLOS ONE 2015, 10, e0143948; d) J. L. Heier, D.
J. Mikolajczak, C. Böttcher, B. Koksch, J. Pept. Sci. 2017, 108, e23003;
e) T. Q. Luong, N. Erwin, M. Neumann, A. Schmidt, C. Loos, V. Schmidt,
M. Fändrich, R. Winter, Angew. Chem. Int. Ed. 2016, 55, 12412-12416;
f) O. Monasterio, E. Nova, R. Diaz-Espinoza, Biochem. Biophys. Res.
Commun. 2017, 482, 1194-1200; g) T. O. Omosun, M.-C. Hsieh, W. S.
Childers, D. Das, A. K. Mehta, N. R. Anthony, T. Pan, M. A. Grover, K.
M. Berland, D. G. Lynn, Nat. Chem. 2017, 9, 805-809; h) N. Singh, M.
Kumar, J. F. Miravet, R. V. Ulijn, B. Escuder, Chem. Eur. J. 2017, 23,
981-993; i) L. A. Solomon, J. B. Kronenberg, H. C. Fry, J. Am. Chem.
Soc. 2017, 139, 8497-8507; j) C. Zhang, R. Shafi, A. Lampel, D.
MacPherson, C. G. Pappas, V. Narang, T. Wang, C. Maldarelli, R. V.
Ulijn, Angew. Chem. Int. Ed. 2017, 56, 14511-14515; k) P. Makam, S. S.
[10] D. M. Carminati, R. Fasan, ACS Catal. 2019, 9, 9683-9697.
[11] a) M. Bordeaux, V. Tyagi, R. Fasan, Angew. Chem. 2015, 127, 1764-
1768; b) L. Villarino, K. E. Splan, E. Reddem, L. Alonso-Cotchico, C.
Gutiérrez de Souza, A. Lledós, J.-D. Maréchal, A.-M. W. H. Thunnissen,
G. Roelfes, Angew. Chem. Int. Ed. 2018, 57, 7785-7789.
[12] a) O. Carny, E. Gazit, FASEB J. 2005, 19, 1051-1055; b) J. Greenwald,
R. Riek, J. Mol. Biol. 2012, 421, 417-426; c) C. P. J. Maury, Orig. Life
Evol. Biosph. 2009, 39, 141-150.
[13] a) P. S. Coelho, Z. J. Wang, M. E. Ener, S. A. Baril, A. Kannan, F. H.
Arnold, E. M. Brustad, Nat. Chem. Biol. 2013, 9, 485-487.
This article is protected by copyright. All rights reserved.