8376
N. Martin, E. J. Thomas / Tetrahedron Letters 42 (2001) 8373–8377
Me
Me
S
N
S
Me
Me
Me
Me
ii
i
OH
Me
OP
Me
Me
Me
30
N
Me
Me
O
Me
Me
O
SEMO
DMTO
SEMO
OP
Me
OH
Me
OP
38
37
iii
S
S
N
Me
Me
iv, v
vi
Me
Me
1
OR
Me
OP
Me
Me
Me
N
Me
Me
O
Me
Me
O
O
OH
HO2C
O
OR
OP
40 R = SiMe2But
2 R = H
39
(P = SiMe2But)
t
Scheme 6. Reagents and conditions: i, 36·LiNiPr2, −78°C (67%); ii, (a) BuMe2SiOTf (99%), (b) Cl2CHCO2H (79%); iii, (a)
n
Dess–Martin, (b) NaClO2, (c) MgBr2, BuSH, K2CO3 (62% from 38); iv, 2,4,6-trichlorobenzoyl chloride, then DMAP (62%); v,
F3CCO2H, DCM (91%); vi, DMDO, −50°C (82%, facial selectivity 4.2:1 in favour of epothilone B 1).
studentship (to N.M.) under the CASE scheme, and Dr.
D. Rawson of Pfizer for many helpful discussions.
a mixture of diastereoisomers which were not sepa-
rated. Instead regioselective hydroboration–oxidation
followed by selective protection of the primary alcohol
as its dimethoxytrityl ether and Dess–Martin oxidation
of the secondary alcohol provided the required ethyl
ketone 36.
References
1. Hofle, G.; Bedorf, N.; Steinmetz, H.; Schomburg, D.;
Gerth, K.; Reichenbach, H. Angew. Chem., Int. Ed. Engl.
1996, 35, 1567.
2. Bollag, D. M.; McQueney, P. A.; Zhu, J.; Hensens, O.;
Koupal, L.; Liesch, J.; Goetz, M.; Lazarides, E.; Woods,
C. M. Cancer Res. 1995, 55, 2325.
The aldol condensation between the aldehyde 30 and
the ethyl ketone 36 using lithium diisopropylamide as
base gave the required product 37 with excellent
stereoselectivity (Scheme 6). The configuration assigned
to the aldol product was based initially on literature
precedent4 and was confirmed by the completion of a
synthesis of the natural products 1 and 2.
3. For excellent reviews on epothilone chemistry and biol-
ogy, see: (a) Nicolaou, K. C.; Roschangar, F.; Vourlou-
mis, D. Angew. Chem., Int. Ed. Engl. 1998, 37, 2014; (b)
Harris, C. R.; Danishefsky, S. J. J. Org. Chem. 1999, 64,
8434; (c) Mulzer, J. Monatsh. Chem. 2000, 131, 205; For
other total syntheses of epothilone B, see: (d) Nicolaou,
K. C.; Ninkovic, S.; Sarabia, F.; Vourloumis, D.; He, Y.;
Vallberg, H.; Finlay, M. R. V.; Yang, Z. J. Am. Chem.
Soc. 1997, 119, 7974; (e) Meng, D.; Bertinato, P.; Balog,
A.; Su, D.-S.; Kamenecka, T.; Sorensen, E. J.;. Danishef-
sky, S. J. J. Am. Chem. Soc. 1997, 119, 10073; (f) May, S.
A.; Grieco, P. A. Chem. Commun. 1998, 1597; (g)
Schinzer, D.; Bauer, A.; Schieber, J. Chem. Eur. J. 1999,
5, 2492; (h) White, J. D.; Sundermann, K. F.; Carter, R.
G. Org. Lett. 1999, 1, 1431; (i) Martin, H. J.; Drescher,
M.; Mulzer, J. Angew. Chem., Int. Ed. 2000, 39, 581; (j)
Sawada, D.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.
2000, 122, 10521; For recent syntheses of analogues for
biological evaluation, see: (k) Nicolaou, K. C.; Namoto,
K.; Li, J.; Ritzen, A.; Ulven, T.; Shoji, M.; Zaharevitz,
D.; Gussio, R.; Sackett, D. L.; Ward, R. D.; Hensler, A.;
Fojo, T.; Giannakakou, P. Chembiochem 2001, 2, 69; (l)
Schinzer, D.; Altmann, K. H.; Stuhlmann, F.; Bauer, A.;
Wartmann, M. Chembiochem 2000, 1, 67; (m) Mulzer, J.;
Karig, G.; Pojarkiev, P. Tetrahedron Lett. 2000, 41, 7635;
(n) Altmann, K. H.; Bold, G.; Caravatti, G.; End, N.;
Florsheimer, A.; Guagnano, V.; O’Reilly, T.; Wartmann,
M. Chimia 2000, 54, 612.
The 7-hydroxyl group was protected as its tert-
butyldimethylsilyl ether and selective removal of the
dimethoxytrityl group gave the primary alcohol 38.
This was oxidised to the corresponding carboxylic acid
and the 15-hydroxyl group deprotected to give the
hydroxy-acid 39. Cyclisation using the modified
Yamaguchi procedure followed by desilylation gave
epothilone D 2 which had spectroscopic data (NMR,
MS, IR) identical to those reported for the natural
product. Regio- and stereoselective oxidation of the
12,13-double-bond using dimethyl dioxirane following
the literature procedure3 then gave epothilone B 1,
again with spectroscopic data identical to those
published.
This work includes the completion of a total synthesis
of epothilones B and D. Of interest is the use of allyltin
chemistry for the convergent and stereoselective forma-
tion of the trisubstituted C(12)ꢀC(13) double-bond. The
exploratory work also exemplified a procedure for 1,8-
stereocontrol.
Acknowledgements
We thank the EPSRC and Pfizer Global Research for a