Angewandte
Chemie
used for both 4a or 8a and the 1-(2-nitrophenyl)ethyl (NPE) ether
carboxylic and phosphoric acids, for which a faster release is
expected.[11b] The caging of relevant neurotransmitters and
second messengers is presently under investigation.
reference (identical extinction coefficients at 364 nm), whereas for
the DMNPT ether derivatives a mixture of 0.1 mm of 5b or 8b and
1 mm of the NPE ether reference was used. The mixtures of substrate
and reference were photolyzed by continuous irradiation at 364 nm,
and aliquots were subjected to reversed-phase HPLC to determine
the extent of the photolytic conversions. HPLC analysis was carried
out on a Zorbax C18 column (4.6 250 nm); elution was performed at
Experimental Section
General procedure for Mitsunobu coupling: A mixture of triphenyl-
phosphane/diisopropyl azodicarboxylate (DIAD) or tributylphos-
phane/tetramethyl azodicarboxamide (TMAD) (1:1, 1.5 equiv) was
added as a solution in benzene to a solution in benzene of 1a or 1b
(1 equiv) and benzyl alcohol or 2-bromoethanol (1.2–2 equiv). The
resulting mixture was stirred under an argon atmosphere (see Table 1
for reaction conditions). The solvent was removed after the time
indicated, and the crude product was purified by flash chromatog-
raphy or reversed-phase HPLC.
À1
a flowrate of 1 mLmin with a linear gradient of acetonitrile in an
aqueous solution of TFA (0.1%) from 0 to 100% (v/v) over 30 min.
The retention times for 4a, 5b, 8a, 8b, (o-nitroso)trifluoroacetophe-
none, and (4,5-dimethoxy-1-nitroso)trifluoroacetophenone were 20.7,
22.4, 25.7, 24.9, 22.5, and 21.2 min, respectively. Quantum yields were
estimated by considering the conversions at ꢀ 30% to limit errors
due to undesired light absorption during photolysis as much as
possible.
1a: 1H NMR (200 MHz, CDCl3, 258C, TMS): d = 4.51 (br s, 1H),
6.16 (q, 3J(H,F) = 6.0 Hz, 1H), 7.57–7.62 (m, 1H), 7.68–7.77 (m, 1H),
7.98 (d, 3J(H,H) = 7.9 Hz, 1H), 8.01 ppm (dd, 3J(H,H) = 9.0 Hz,
4J(H,H) = 1.1 Hz, 1H); 13C NMR (300 MHz, CDCl3, 258C, TMS):
d = 67.0 (q, 2J(C,F) = 33 Hz), 124.3 (q, 1J(C,F) = 283 Hz), 125.3, 129.6,
129.9, 130.5, 133.9, 148.9 ppm.
Received: November 4, 2003 [Z53247]
Keywords: caging groups · Mitsunobu reaction ·
.
1b: 1H NMR (300 MHz, CDCl3, 258C, TMS): d = 3.99 (s, 3H),
4.03 (s, 3H), 6.32–6.38 (m, 1H), 7.36 (s, 1H), 7.66 ppm (s, 1H);
13C NMR (300 MHz, CDCl3, 258C, TMS): d = 56.7, 56.9, 66.7 (q,
2J(C,F) = 32 Hz), 108.4, 110.9, 122.8 (q, 1J(C,F) = 210 Hz), 127.4,
141.3, 149.4, 153.7 ppm.
photochemistry · photolysis · protecting groups
[1] a) V. N. R. Pillai, Synthesis 1980, 1 – 26; b) C. G. Bochet, J. Chem.
Soc. Perkin Trans. 1 2002, 123 – 142.
2a: 1H NMR (200 MHz, CDCl3, 258C, TMS): d = 4.67 (d,
3J(H,H) = 11.4 Hz, 1H), 4.72 (d, 3J(H,H) = 11.4 Hz, 1H), 5.94 (q,
3J(H,F) = 3.0 Hz, 1H), 7.30–7.42 (m, 5H), 7.56–7.63 (m, 1H), 7.74
(dd, 3J(H,H) = 7.9 Hz, 3J(H,H) = 7.5 Hz, 1H), 7.99 (d, 3J(H,H) =
7.9 Hz, 1H), 8.03 ppm (d, 3J(H,H) = 8.3 Hz, 1H); 13C NMR
(300 MHz, CDCl3, 258C, TMS): d = 73.4 (q, 2J(C,F) = 32 Hz), 73.5,
123.9 (q, 1J(C,F) = 281 Hz), 125.3, 128.5, 128.9, 129.0, 130.4, 130.7,
133.9, 136.3, 149.7 ppm.
[2] a) S. R. Adams, R. Y. Tsien, Annu. Rev. Physiol. 2000, 18, 755 –
784; b) G. Marriott, Methods Enzymol. 1998, 291, “Caged
Compounds” (special issue).
[3] a) M. C. Pirrung, J.-C. Bradley, J. Org. Chem. 1995, 60, 1116 –
1117; b) A. Hasan, K.-P. Stengele, H. Giegrich, P. Cornwell,
K. R. Isham, R. A. Sachleben, W. Pfleiderer, R. S. Foote,
Tetrahedron 1997, 53, 4247 – 4264; c) T. Furuta, Hirayama,
Y. M. Iwamura, Org. Lett. 2001, 3, 1809 – 1812; d) M. C. Pirrung,
L. Wang, M. P. Montague-Smith, Org. Lett. 2001, 3, 1105 – 1108.
[4] S. Loudwig, M. Goeldner, Tetrahedron Lett. 2001, 42, 7957 –
7959.
[5] a) U. Zehavi, B. Amit, A. Patchornik, J. Org. Chem. 1972, 37,
2281 – 2285; b) K. C. Nicolaou, N. Winssinger, J. Pastor, F.
DeRoose, J. Am. Chem. Soc. 1997, 119, 449 – 450; c) S. Wana-
tabe, R. Hiroikawa, M. Iwamura, Bioorg. Med. Chem. Lett. 1998,
8, 3375 – 3378; d) S. Pitsch, P. A. Weiss, X. Wu, D. Ackermann, T.
Honegger, Helv. Chim. Acta 1999, 82, 1753 – 1761.
[6] a) P. B. Jones, M. P. Pollastri, N. A. Porter, J. Org. Chem. 1996,
61, 9455 – 9461; b) M. C. Pirrung, W. H. Pieper, K. P. Kaliappan,
M. R. Dhananjeyan, Proc. Natl. Acad. Sci. USA 2003, 100,
12548 – 12553.
[7] M. P. Coleman, M. K. Boyd, Tetrahedron Lett. 1999, 40, 7911 –
7915.
[8] a) J. E. T. Corrie, J. Chem. Soc. Perkin Trans. 1 1993, 2161 – 2166;
b) S. Watanabe, T. Sueyoshi, M. Ichihara, C. Uehara, M.
Iwamura, Org. Lett. 2001, 3, 255 – 257.
[9] L. Peng, M. Goeldner, J. Org. Chem. 1996, 61, 185 – 191.
[10] R. Glatthar, B. Giese, Org. Lett. 2000, 2, 2315 – 2317.
[11] a) A. P. Pelliccioli, J. Wirz, Photochem. Photobiol. Sci. 2002, 1,
441 – 458; b) J. E. T. Corrie, A. Barth, V. R. N. Munasinghe,
D. R. Trentham, M. C. Hutter, J. Am. Chem. Soc. 2003, 125,
8546 – 8554.
1
4a: H NMR (300 MHz, CD3CN, 258C, TMS): d = 3.16 (s, 9H),
3.55–3.67 (m, 2H), 4.00–4.14 (m, 2H), 5.99 (q, 3J(H,F) = 9.6 Hz, 1H),
7.78 (m, 1H), 7.86–7.95 (m, 2H), 8.18 ppm (d, 3J(H,H) = 9.0 Hz, 1H).
1
5b: H NMR (300 MHz, CD3CN, 258C, TMS): d = 2.30 (s, 9H),
2.71–2.79 (m, 2H), 3.88–4.01 (m, 2H), 3.93 (s, 3H), 3.98 (s, 3H), 6.03
3
(q, J(H,F) = 6.1 Hz, 1H), 7.18 (s, 1H), 7.72 ppm (s, 1H); 13C NMR
(300 MHz, CD3CN, 258C, TMS): d = 8.4, 26.3, 56.6, 56.9, 65.1, 74.2 (q,
2J(C,F) = 31 Hz), 109.9, 110.4, 124.9 (q, 1J(C,F) = 281 Hz), 142.1,
150.2, 154.2 ppm.
6: 1H NMR (200 MHz, CDCl3, 258C, TMS): d = 2.07 (s, 3H), 2.13
(s, 3H), 2.15 (s, 3H), 2.31 (s, 3H), 3.05 (d, 3J(H,H) = 5.4 Hz, 1H), 3.63
(td, 3J(H,H) = 5.4 Hz, 3J(H,H) = 9.3 Hz, 1H), 3.98 (m, 1H), 4.19–4.54
(m, 2H), 4.98 (dd, 3J(H,H) = 3.7 Hz, 3J(H,H) = 10.3 Hz, 1H), 5.54 (t,
3J(H,H) = 9.0 Hz, 1H), 5.65 (d, 3J(H,H) = 3.4 Hz, 1H), 6.97 (d,
3J(H,H) = 8.8 Hz, 2H), 7.10 ppm (d, 3J(H,H) = 8.8 Hz, 2H);
13C NMR (300 MHz, CDCl3, 258C, TMS): d = 21.1, 21.2, 21.3, 21.4,
69.6, 70.7, 70.8, 73.1, 86.9, 95.1, 117.0, 130.4, 132.8, 154.1, 170.8 ppm.
1
8a: H NMR (300 MHz, CD3OD, 258C, TMS): d = 2.27 (s, 3H),
3.01–4.07 (m, 6H), 5.26 (d, 3J(H,H) = 3.4 Hz, 0.5H), 5.40 (d,
3J(H,H) = 3.4 Hz, 0.5H), 5.83 (q, 3J(H,F) = 6.0 Hz, 0.5H), 6.02 (q,
3J(H,F) = 6.1 Hz, 0.5H), 6.96–7.10 (m, 4H), 7.67 (m, 1H), 7.76 (dd,
3
3J(H,H) = 6.6 Hz, J(H,H) = 7.0 Hz, 1H), 7.86 (m, 1H), 8.05 ppm (d,
3J(H,H) = 8.3 Hz, 1H).
1
8b: H NMR (300 MHz, CD3OD, 258C, TMS): d = 2.30 (s, 3H),
3.15–4.53 (m, 6H), 3.95 (s, 3H), 3.99 (s, 3H), 5.49 (d, 3J(H,H) =
[12] a) O. Mitsunobu, Synthesis, 1981, 1, 1 – 28; b) D. L. Hughes, Org.
React. 1992, 42, 335 – 656.
3
3.6 Hz, 1H), 6.20 (d, J(H,F) = 6.4 Hz, 1H), 7.04–7.12 (m, 4H), 7.47
(s, 1H), 7.70 ppm (s, 1H).
[13] E. E. Smissman, J. P. Li, Z. H. Israili, J. Org. Chem. 1968, 33,
4231 – 4236.
The quantum yields for the photoconversion of compounds 4a,
5b, 8a, and 8b were determined by comparison with the photolysis of
1-(2-nitrophenyl)ethyl choline[9] (f= 0.27) or 1-(2-nitrophenyl)ethyl
arsenocholine[16] (f= 0.26), which were taken as references in a
phosphate buffer (0.1m, pH 7.2) at 258C. Identical absorbances for
the reference and the compound tested were used during the
photolyses. For the NPT derivatives concentrations of 1 mm were
[14] R. Stewart, R. Van der Linden, Can. J. Chem. 1960, 38, 399 – 406.
[15] a) H.-S. Cho, J. Yu, J. R. Falck, J. Am. Chem. Soc. 1994, 116,
8354 – 8355; b) J. R. Falck, J. Yu, H.-S. Cho, Tetrahedron Lett.
1994, 35, 5997 – 6000; c) D. P. Sebesta, S. S. O'Rourke, W. A.
Pieken, J. Org. Chem. 1996, 61, 361 – 362.
[16] S. Ito, T. Tsunoda, Pure Appl. Chem. 1999, 71, 1053 – 1057.
Angew. Chem. Int. Ed. 2004, 43, 2008 –2012
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2011