ChemComm
Communication
2-phenylindole 1 by oxone gives 2-phenyl-3H-intermediate A.13,19
Then, Baeyer–Villiger oxidation of the intermediate A generates
the product 2.20
Table 3 Oxidation of 2-arylindoles for the synthesis of 2-arylbenzoxazinones
with oxonea,b
In summary, we have developed a simple, efficient and
practical method for the oxidation of 2-arylindoles to synthesize
2-arylbenzoxazinones. Environmentally benign, inexpensive,
and safe oxone was found to be a particularly effective terminal
oxidant in the reaction. The reaction tolerates a wide range
of functional groups and is a reliable method for the rapid
assembly of a variety of valuable 2-arylbenzoxazinones in high
yields under mild conditions.
We thank the National Natural Science Foundation of China
(NSFC-21272183, 21002077) and the Rising Stars Foundation of
Shanxi Province (2012KJXX-26) for financial support.
Notes and references
1 (a) A. Krantz, R. W. Spencer, T. F. Tam, T. J. Liak, L. J. Copp,
E. M. Thomas and S. P. Rafferty, J. Med. Chem., 1990, 33, 464–479;
(b) R. Padwal, Curr. Opin. Invest. Drugs, 2008, 9, 414–421.
2 (a) J. C. Powers, J. L. Asgian, O. D. Ekici and K. E. James, Chem. Rev.,
2002, 102, 4639–4750; (b) G. M. Coppola, J. Heterocycl. Chem., 1999,
36, 563–588.
3 (a) P. Kumar, B. Shrivastava, S. N. Pandeya and J. P. Stables, Eur. J.
Med. Chem., 2011, 46, 1006–1018; (b) A. Gupta, S. K. Kashaw, N. Jain,
H. Rajak, A. Soni and J. P. Stables, Med. Chem. Res., 2011, 20,
1638–1642; (c) P. Sharma, A. Kumar, P. Kumari, J. Singh and
M. P. Kaushik, Med. Chem. Res., 2012, 21, 1136–1148; (d) J. Varsha,
M. Pradeep, K. Sushil and J. P. Stables, Eur. J. Med. Chem., 2008, 43,
135–141.
a
Reaction conditions: 1a (0.2 mmol), oxone (3.0 equiv.) in CH3NO2
b
(2 mL) at 100 1C for 8–10 h. Isolated yield.
4 Z.-Y. Ge, Q.-M. Xu, X.-D. Fei, T. Tang, Y.-M. Zhu and S.-J. Ji, J. Org.
Chem., 2013, 78, 4524–4529.
5 (a) M. S. Khajavi, N. Montazari and S. S. S. Hosseini, J. Chem. Res.,
Synop., 1997, 286–287; (b) V. Balsubramaniyan and N. P. Argade,
Tetrahedron Lett., 1986, 27, 2487–2488.
6 (a) C. Larksarp and H. Alper, Org. Lett., 1999, 1, 1619–1622;
(b) Z. Zheng and H. Alper, Org. Lett., 2008, 10, 829–832.
7 (a) X.-F. Wu, J. Schranck, H. Neumann and M. Beller, Chem.–Eur. J.,
2011, 17, 12246–12249; (b) X.-F. Wu, H. Neumann and M. Beller,
Chem.–Eur. J., 2012, 18, 12599–12602.
Scheme 1 Oxidation of 2-heteroatom substituted indoles.
8 R. Giri, J. K. Lam and J.-Q. Yu, J. Am. Chem. Soc., 2010, 132, 686–693.
9 C. E. Houlden, M. Hutchby, C. D. Bailey, J. G. Ford, S. N. G. Tyler,
M. R. Gagne, G. C. Lloyd-Jones and K. I. Booker-Milburn,
Angew. Chem., Int. Ed., 2009, 48, 1830–1833.
10 Q. Liu, P. Chen and G. Liu, ACS Catal., 2013, 3, 178–181.
11 N. J. Turner, Chem. Rev., 2011, 111, 4073–4087.
12 R. A. Sheldon, I. W. C. E. Arends and U. Hanefeld, Green Chemistry
and Catalytic, Wiley-VCH, Weinheim, Germany, 2007.
13 H. Hussain, I. R. Green and I. Ahmed, Chem. Rev., 2013, 113,
3329–3371.
Scheme 2 Oxidation of 2-phenyl-3H-indol-3-one A.
obtained in 90% yield (Scheme 2). This result indicated that the
2-phenyl-3H-indol-3-one A was probably an intermediate for the 14 B. R. Travis, M. Sivakumar, G. O. Hollist and B. Borhan, Org. Lett.,
2003, 5, 1031–1034.
15 (a) Y. Shi, Acc. Chem. Res., 2004, 37, 488–496; (b) D. Yang, Acc. Chem.
oxidation of 2-phenylindole 1 by oxone.
On the basis of the above results and literature reports,10,13
a
Res., 2004, 37, 497–505.
tentative mechanism is shown in Scheme 3. Firstly, oxidation of 16 (a) D. Yang, F. Chen, Z.-M. Dong and D.-W. Zhang, J. Org. Chem.,
2004, 69, 2221–2223; (b) B. R. Travis, R. S. Narayan and B. Borhan,
J. Am. Chem. Soc., 2002, 124, 3824–3825.
17 H2O2 was reported for oxidation of substituted 2-methyl indole to syn-
thesize N-acetylanthranilic acid, see (a) T. Suehiro and A. Nakagawa,
Bull. Chem. Soc. Jpn., 1967, 40, 2919–2924; (b) von J.-M. Adam and
T. Winkle, Helv. Chim. Acta, 1984, 67, 2186–2191.
18 (a) M. N. Noolvi, H. M. Patel, V. Bhardwaj and A. Chauhan,
Eur. J. Med. Chem., 2011, 46, 2327–2346; (b) V. Alagarsamy and
G. Saravanan, Med. Chem. Res., 2013, 22, 1711–1722.
19 (a) J. Yan, B. R. Travis and B. Borhan, J. Org. Chem., 2004, 69,
9299–9302; (b) T. H. C. Bristow, H. E. Foster and M. Hooper,
J. Chem. Soc., Chem. Commun., 1974, 677–678.
20 (a) G.-J. ten Brink, I. W. C. E. Arends and R. A. Sheldon, Chem. Rev.,
2004, 104, 4105–4123; (b) R. Curci, L. Daccolti and C. Fusco,
Acc. Chem. Res., 2006, 39, 1–9; (c) R. J. Richma and A. Hassner,
Scheme 3 Proposed mechanism for the oxidation reaction.
J. Org. Chem., 1968, 33, 2548–2549.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.