Organic Letters
Letter
Wan, B.; Franzblau, S. C.; Petukhov, P. A. J. Med. Chem. 2008, 51,
1999−2002. (f) Chen, Y.; Wang, S.; Xu, X.; Liu, X.; Yu, M.; Zhao, S.;
Liu, L.; Qiu, Y.; Zhang, T.; Liu, B.-F.; Zhang, G. J. Med. Chem. 2013, 56,
4671−4690. (g) Jain, M.; Kwon, C.-H. J. Med. Chem. 2003, 46, 5428−
5436. (h) Villalobos, A.; Blake, J. F.; Biggers, C. K.; Butler, T. W.;
Chapin, D. S.; Chen, Y. L.; Ives, J. L.; Jones, S. B.; Liston, D. R.; Nagel,
A. A.; Nason, D. M.; Nielsen, J. A.; Shalaby, I. A.; White, W. F. J. Med.
Chem. 1994, 37, 2721−2734. (i) Plattner, J. J.; Fung, A. K. L.; Parks, J.
A.; Pariza, R. J.; Crowley, S. R.; Pernet, A. G.; Bunnell, P. R.; Dodge, P.
W. J. Med. Chem. 1984, 27, 1016−1026.
(2) (a) Suto, M. J.; Stier, M. A.; Winters, R. T.; Turner, W. R.; Pinter,
C. D.; Elliott, W. E.; Leopold, J. S. S. J. Med. Chem. 1991, 34, 3290−
3294. (b) Chaker, A.; Najahi, E.; Chatriant, O.; Valentin, A.; Te’ne’, N.;
Treilhou, M.; Chabchoub, F.; Nepveu, F. Arabian J. Chem. 2017, 10,
S2464−S2470.
(3) See selected reviews: (a) Li, L.; Tan, T. D.; Zhang, Y. Q.; Liu, X.;
Ye, L. W. Org. Biomol. Chem. 2017, 15, 8483. (b) Huple, D. B.;
Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348−1367.
(4) (a) Sahani, R. L.; Liu, R.-S. Angew. Chem., Int. Ed. 2017, 56,
12736−12740. (b) Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger,
F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 794−797. (c) Jin,
H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S.
K. Angew. Chem., Int. Ed. 2016, 55, 12688−12692. (d) Mokar, B. D.;
Jadhav, P. D.; Pandit, Y. B.; Liu, R.-S. Chem. Sci. 2018, 9, 4488−4492.
(e) Hu, F.; Szostak, M. Adv. Synth. Catal. 2015, 357, 2583−2614.
(5) (a) Noguchi, T.; Nishii, Y.; Miura, M. Chem. Lett. 2017, 46, 1512−
1514. (b) Han, Y.-P.; Li, X.-S.; Sun, Z.; Zhu, X.-Y.; Li, M.; Song, X.-R.;
Liang, Y.-M. Adv. Synth. Catal. 2017, 359, 2735−2740.
E, and, ultimately, the observed product 3a. In the case of
intermediate D′ the ethyl group is chemically stable to undergo
ring cleavage, further yielding a nitrium intermediate F. This
process rationalizes a side product such as 3-aminoacrylate 4a′-
H after hydration of this nitrilium species. A further dissociation
of this nitrilium is expected to form gold-π-alkyne species A and
2-hydroxybenzonitrile 2a′, which react with each other to afford
observed 3-phenoxyacrylate 4a.
In summary, this work reports two distinct reactions between
1,2-benzisoxazoles and propiolate derivatives. For ethyl
propiolates 1′, their gold-catalyzed reactions afford 3-phenox-
yacrylates 4 whereas tert-butyl propiolates 1 preferably undergo
[4 + 2]-nitrile annulations, further yielding 6H-1,3-oxazin-6-one
derivatives 3. Resulting [4 + 2]-annulation products 3 are further
elaborated into useful 2-phenylpyridine derivatives upon
treatment with electron-deficient alkynes. We postulate a
plausible mechanism in which the two propiolates have the
same initial steps to form gold-containing 6-alkoxy1,3-oxazin-1-
ium intermediates, which undergo distinct chemoselectivity as
effected by the alkoxy groups.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(6) For gold-catalyzed annulations of propiolate derivatives, see
selected examples: (a) Karad, S. N.; Chung, W.-K.; Liu, R.-S. Chem.
Commun. 2015, 51, 13004. (b) Karad, S. N.; Chung, W.-K.; Liu, R.-S.
Chem. Sci. 2015, 6, 5964. (c) Yeom, H.-S.; Koo, J.; Park, H.-S.; Wang,
Y.; Liang, Y.; Yu, Z.-X.; Shin, S. J. Am. Chem. Soc. 2012, 134, 208−211.
(d) Liu, F.; Wang, Y.; Ye, W.; Zhang, J. Org. Chem. Front. 2015, 2, 221.
(e) Sahani, R. L.; Liu, R.-S. Angew. Chem. 2017, 129, 1046−1050.
(f) Chen, M.; Sun, N.; Chen, H.; Liu, Y. Chem. Commun. 2016, 52,
6324.
(7) (a) Alajarin, M.; Vidal, A.; Andrada, P. S.; Tovar, F.; Ochoa, G.
Org. Lett. 2000, 2, 965−968. (b) Alajarin, M.; Andrada, P. S.; Cossio, F.
P.; Arrieta, A.; Lecea, B. J. Org. Chem. 2001, 66, 8470−8477.
(c) Cainelli, G.; Giacomini, D.; Gazzano, M.; Galletti, P.;
Quintavalla, A. Tetrahedron Lett. 2003, 44, 6269−6272. (d) Ge, Z.-
Y.; Xu, Q.-M.; Fei, X.-D.; Tang, T.; Zhu, Y.-M.; Ji, S.-J. J. Org. Chem.
2013, 78, 4524−4529. (e) Chen, M.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-
H. Angew. Chem., Int. Ed. 2013, 52, 14196−14199. (f) Clark, A. D.;
Janowski, W. K.; Prager, R. H. Tetrahedron 1999, 55, 3637−3648.
(8) Stokker, G. J. Org. Chem. 1983, 48, 2613−2615.
Experimental procedures, characterization data, and
copies of 1H and 13C NMR spectra (PDF)
Accession Codes
graphic data for this paper. These data can be obtained free of
bridge Crystallographic Data Centre, 12 Union Road, Cam-
bridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
(9) For gold-catalyzed cycloadditions of alkynes, see selected reviews:
(a) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180−3211. (b) Patil, N. T.;
Yamamoto, Y. Chem. Rev. 2008, 108, 3395−3442. (c) Abu Sohel, S.;
Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269−2281. (d) Muratore, M. E.;
Homs, A.; Obradors, C.; Echavarren, A. M. Chem. - Asian J. 2014, 9,
3066−3082.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
The authors thank the Ministry of Science and Technology and
the Ministry of Education, Taiwan, for supporting this work.
■
(10) For gold-catalyzed [4 + 2]-annulations with alkynes, see selected
examples: (a) Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Am. Chem. Soc.
2011, 133, 20728−20731. (b) Teng, T.-S.; Liu, R.-S. J. Am. Chem. Soc.
2010, 132, 9298−9300. (c) Dateer, R. B.; Shaibu, B. S.; Liu, R.-S.
Angew. Chem., Int. Ed. 2012, 51, 113−117. (d) Giri, S. S.; Liu, R.-S.
Chem. Sci. 2018, 9, 2991−2995. (e) Shu, C.; Wang, Y.-H.; Zhou, B.; Li,
X.-L.; Ping, Y.-F.; Lu, X.; Ye, L.-W. J. Am. Chem. Soc. 2015, 137, 9567−
9570. (f) Zhang, G.; Huang, X.; Li, G.; Zhang, L. J. Am. Chem. Soc. 2008,
130, 1814−1815. (g) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J.
Am. Chem. Soc. 2003, 125, 10921−10925. (h) Nieto-Oberhuber, C.;
REFERENCES
■
(1) See selected examples: (a) Liu, W.; Lau, F.; Liu, K.; Wood, H. B.;
Zhou, G.; Chen, Y.; Li, Y.; Akiyama, T. E.; Castriota, G.; Einstein, M.;
Wang, C.; McCann, M. E.; Doebber, T. W.; Wu, M.; Chang, C. H.;
McNamara, L.; McKeever, B.; Mosley, R. T.; Berger, J. P.; Meinke, P. T.
J. Med. Chem. 2011, 54, 8541−8554. (b) Basarab, G. S.; Brassil, P.;
Doig, P.; Galullo, V.; Haimes, H. B.; Kern, G.; Kutschke, A.; McNulty,
J.; Schuck, V. J. A.; Stone, G.; Gowravaram, M. J. Med. Chem. 2014, 57,
9078−9095. (c) Basarab, G. S.; Doig, P.; Galullo, V.; Kern, G.; Kimzey,
A.; Kutschke, A.; Newman, J. P.; Morningstar, M.; Mueller, J.; Otterson,
L.; Vishwanathan, K.; Zhou, F.; Gowravaram, M. J. Med. Chem. 2015,
58, 6264−6282. (d) Naidu, K. M.; Srinivasarao, S.; Agnieszka, N.; Ewa,
A.-K.; Kumar, M. M. K.; Sekhar, K. V. G. S. Bioorg. Med. Chem. Lett.
2016, 26, 2245−2250. (e) Velaparthi, S.; Brunsteiner, M.; Uddin, R.;
́
Lopez, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178−6179.
D
Org. Lett. XXXX, XXX, XXX−XXX