10.1002/anie.202001571
Angewandte Chemie International Edition
COMMUNICATION
14106−14110; Angew. Chem. 2016, 128, 14312−14316. (e) L. Buzzetti,
A. Prieto, S. R. Roy, P. Melchiorre, Angew. Chem. Int. Ed. 2017, 56,
15039−15043; Angew. Chem. 2017, 129, 15235–15239. (f) Á.
Gutiérrez-Bonet, C. Remeur, J. K. Matsui, G. A. Molander, J. Am.
Chem. Soc. 2017, 139, 12251−12258. (g) B. R. McDonald, K. A.
Scheidt, Org. Lett. 2018, 20, 6877−6881. (h) X. Wang, M. Yang, W. Xie,
X. Fan, J. Wu, Chem. Commun., 2019, 55, 6010−6013. (i) X. Chen, F.
Ye, X. Luo, X. Liu, J. Zhao, S. Wang, Q. Zhou, G. Chen, P. Wang, J.
Am. Chem. Soc. 2019, 141, 18230−18237.
To elucidate the reaction mechanism, control reactions have
been carried out (Scheme 3). The radical relay reaction of N-
phenylmethacrylamide proceeded to deliver the alkylated
oxindole in 31% yield (Scheme 3A). When subjecting methyl
carbazate to the standard conditions, no alkylation was
observed. Instead, the isolated product was the corresponding
methyl ester (Scheme 3B). This indicates that a stepwise
dehydrazination-decarboxylation sequence was involved in the
electrochemical fragmentation of carbazate. Furthermore, the
cyclic voltammetry results demonstrated that carbazate can be
easily oxidized under electrochemical conditions (E1/2ox = 1.44 V
vs AgNO3) for deoxyalkylation of quinoxalinone (Scheme 3C).
Based on the above experimental facts, a plausible reaction
mechanism is proposed. The first stage is consecutive anodic
oxidation of carbazate and deprotonation to generate
hydrazinecarboxylate radical B and diazenecarboxylate C.24
Further anodic oxidation cleaves diazene to form acyl radical E
and releases molecular nitrogen. The second step is
decarboxylation of acyl radical E to furnish alkyl radical F
(Scheme 3D).
[4]
[5]
For reviews of haloalkanes as alkyl radical reservoirs and their
applications, see: (a) M. R. Kwiatkowski, E. J. Alexanian, Acc. Chem.
Res. 2019, 52, 1134−1144. (b) S. Ye, T. Xiang, X. Li, J. Wu, Org. Chem.
Front, 2019, 6, 2183−2019.
For examples of organoboron as alkyl radical reservoirs and their
applications, see: (a) J. C. Tellis, D. N. Primer, G. A. Molander, Science,
2014, 345, 433−436. (b) D. N. Primer, G. A. Molander, J. Am. Chem.
Soc. 2017, 139, 9847−9850. (c) J. K. Matsui, D. N. Primer, G. A.
Molander, Chem. Sci. 2017, 8, 3512−3522. (d) G. Sorin, R. M.
Mallorquin, Y. Contie, A. Baralle, M. Malacria, J. P. Goddard, L.
Fensterbank, Angew. Chem. Int. Ed. 2010, 49, 8721−8723; Angew.
Chem. 2010, 122, 8903−8905 (e) C. Shu, A. Noble, V. K. Aggarwal,
Angew. Chem. Int. Ed. 2019, 58, 3870−387; Angew. Chem. 2019, 131,
3910−3914. (f) H. Yan, Z. Hou, H. Xu, Angew. Chem. Int. Ed. 2019, 58,
4592−459; Angew. Chem. 2019, 131, 4640−4643. (g) D. Liu, Y. Li, X.
Qi, C. Liu, Y. Lan, A. Lei, Org. Lett. 2015, 17, 998−1001.
In summary, we have reported carbazate as an alkyl source
under electrochemical conditions. Primary, secondary and
tertiary alkyl radicals can be readily accessed via the sequential
anodic oxidative fragmentation for the direct functionalization of
N-heteroarenes. This sustainable method avoids the use of
chemical oxidants and only releases nitrogen, carbon dioxide
and hydrogen. Further study of carbazate is underway in the
laboratory.
[6]
For examples of organoboron as alkyl radical reservoirs and their
applications, see: (a) Y. Fujiwara, J. A. Dixon, F. O’Hara, E. D. Funder,
D. D. Dixon, R. A. Rodriguez, R. D. Baxter, B. Herlé, N. Sach, M. R.
Collins, Y. Ishihara, P. S. Baran, Nature. 2012, 492, 95−99. (b) J. Rong,
L. Deng, P. Tan, C. Ni, Y. Gu, J. Hu, Angew. Chem. Int. Ed. 2016, 55,
2743−2747; Angew. Chem. 2016, 128, 2793−2797. (c) P. Liu, W. Liu, C.
Li, J. Am. Chem. Soc. 2017, 139, 14315−14321. (d) T. Knauber, R.
Chandrasekaran, J. W. Tucker, J. M. Chen, M. Reese, D. A. Rankic, N.
Sach, C. Helal, Org. Lett. 2017, 19, 6566−6569. (e) F. Xue, F. Wang, J.
Liu, J. Di, Q. Liao, H. Lu, M. Zhu, L. He, H. He, D. Zhang, H. Song, X.
Liu, Y. Qin, Angew. Chem. Int. Ed. 2018, 57, 6667−6671; Angew.
Chem. 2018, 130, 6777−6781. (f) T. Xie, Y. Zhang, L. Liu, Z. Shen, T.
Loh, X. Chu, Chem. Commun. 2018, 54, 12722−12725.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (Nos. 21772085 and 21971107). We also
thank Collaborative Innovation Centre of Advanced
Microstructures and Collaborative Innovation Center of Solid-
State Lighting and Energy-Saving Electronics of Nanjing
University.
[7]
[8]
[9]
J. Cornella, C. Zarate, R. Martin, Chem. Soc. Rev. 2014, 43,
8081−8097.
J. B. Pedley, R. D. Naylor, S. P. Kirby, In Thermochemical Data of
Organic Compounds, 2nd ed.; Chapman and Hall: New York, 1986.
H. G. Roth, N. A. Romero, D. A. Nicewicz, Synlett. 2016, 27, 714−723.
[10] S. W. McCombie, W. B. Motherwell, M. J. Tozer, The Baiton-McCombie
Reaction. In Organic Reactions; John Wliey & Sons, Inc.; Hoboken, NJ,
2012, 77, 161−591.
Keywords: carbazate
•
electrochemistry
•
deoxgenative
[11] For recent reviews : C. R. Jamison, L. E. Overman, Acc. Chem. Res.
2016, 49, 1578−1586.
alkylation • radical fragmentation
[12] (a) G. L. Lackner, K. W. Quasdorf, L. E. Overman, J. Am. Chem. Soc.
2013, 135, 15342−15345. (b) C. C. Nawrat, C. R. Jamison, Y. Slutskyy,
D. W. C. MacMillan, L. E. Overman, J. Am. Chem. Soc. 2015, 137,
11270−11273.
References
[13] Y. Ye, H. Chen, J. Sessler, H. Gong, J. Am. Chem. Soc. 2019, 141,
820−824.
[1]
For recent reviews, see: (a) M. Yan, J. C. Lo, J. T. Edwards, P. S.
Baran, J. Am. Chem. Soc. 2016, 138, 12692−12714. (b) Q. Michaudel,
Y. Ishihara, P. S. Baran, Acc. Chem. Res. 2015, 48, 712−721. (c) A.
Studer, D. P. Curran, Angew. Chem. Int. Ed. 2016, 55, 58−102; Angew.
Chem. 2016, 128, 58−106. (d) S. Z. Zard, Org. Lett. 2017, 19,
1257−1269.
[14] S. P. Pitre, M. Muuronen, D. A. Fishman, L. E. Overman, ACS Catal.
2019, 9, 3413−3418.
[15] (a) E. E. Stache, A. B. Ertel, T. Rovis, A. G. Doyle, ACS Catal. 2018, 8,
11134−11139. (b) L. Lu, D. Cheng, Y. Zhan, R. Shi, C. Chiang, A. Lei,
Chem. Commun., 2017, 53, 6852−6855.
[2]
[3]
For reviews of pyridinium salts as alkyl radical reservoirs and their
applications, see: (a) F. He, S. Ye, J. Wu, ACS Catal. 2019, 9,
8943−8960. (b) J. T. M. Correia, V. A. Fernandes, B. T. Matsuo, J. A. C.
Delgado, W. C. Souza, M. W. Paixão, Chem. Commun. 2019, DOI:
10.1039/C9CC08348K.
[16] (a) K. D. Moeller, Tetrahedron. 2000, 56, 9527-9554. (b) J. B. Sperry, D.
L. Wright, Chem. Soc. Rev. 2006, 35, 605−621. (c) J. Yoshida, K.
Kataoka, R. Horcajada, A. Nagaki, Chem. Rev. 2008, 108, 2265−2299.
(d) R. Francke, R. D. Little, Chem. Soc. Rev. 2014, 43, 2492−2521. (e)
A. Studer, D. P. Curran, Nat. Chem. 2014, 6, 765−773. (f) M. Yan, Y.
Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230−13319. (g) S.
Tang, L. Zeng, A. Lei, J. Am. Chem. Soc. 2018, 140, 13128−13135. (h)
H. Wang, X. Gao, Z. Lv, T. Abdelilah, A. Lei, Chem. Rev. 2019, 119,
6769−6787.
For examples of hantzsch ester as radical reservoirs and their
applications, see: (a) G. Li, L. Wu, G. Lv, H. Liu, Q. Fu, X. Zhang, Z.
Tang, Chem. Commun. 2014, 50, 6246−6248. (b) W. Chen, Z. Liu, J.
Tian, J. Li, J. Ma, X. Chen, G. Li, J. Am. Chem. Soc. 2016, 138,
12312−12315. (c) Á. Gutiérrez-Bonet, J. C. Tellis, J. K. Matsui, B. A.
Vara, G. A. Molander, ACS Catal. 2016, 6, 8004−8008. (d) K. Nakajima,
S. Nojima, Y. Nishibayashi, Angew. Chem. Int. Ed. 2016, 55,
[17] (a) Z. Wu, H. Xu, Angew. Chem. Int. Ed. 2017, 56, 4734−4738; Angew.
Chem. 2017, 129, 4812−4816. (b) Q. Wang, K. Xu, Y. Jiang, Y. Liu, B.
Sun, C. Zeng, Org. Lett. 2017, 19, 5517−5520. (c) K. Ye, G. Pombar, N.
This article is protected by copyright. All rights reserved.