RSC Advances
Communication
Notes and references
1 (a) M. Oestreich, Angew. Chem., Int. Ed., 2014, 53, 2282; (b)
M. R. Harris, M. O. Konev and E. R. Jarvo, J. Am. Chem.
Soc., 2014, 136, 7825; (c) A. Faulkner, N. J. Race, J. S. Scott
and J. F. Bower, Chem. Sci., 2014, 5, 2416; (d) H. Li,
C. C. C. J. Seechurn and T. J. Colacot, ACS Catal., 2012, 2,
1147; (e) A. Balanta, C. Godard and C. Claver, Chem. Soc.
Rev., 2011, 40, 4973; (f) J. M. Liu, X. G. Peng, W. Sun,
Y. W. Zhao and C. G. Xia, Org. Lett., 2008, 10, 3933; (g)
B. Baruwati, D. Guin and S. V. Manorama, Org. Lett., 2007,
9, 5377; (h) J.-P. Corbet and G. Mignani, Chem. Rev., 2006,
106, 2651; (i) P. D. Stevens, G. F. Li, J. D. Fan, M. Yen and
Y. Gao, Chem. Commun., 2005, 4435; (j) C. S. Consorti,
F. R. Flores and J. Dupont, J. Am. Chem. Soc., 2005, 127,
12054; (k) Metal-Catalyzed Cross-Coupling Reactions, 2nd
Completely Rev. and Enlarged Ed, ed. A. de Meijere and F.
Diederich, Wiley-VCH, Weinheim, 2004; (l) O. Mongin,
L. Porres, L. Moreaux, J. Merta and M. Blanchard-Desce,
Org. Lett., 2002, 4, 719; (m) I. Paterson, R. D. M. Davies and
R. Marquez, Angew. Chem., Int. Ed., 2001, 40, 603; (n)
L. Brunsveld, E. W. Meijer, R. B. Prince and J. S. Moore, J.
Am. Chem. Soc., 2001, 123, 7978; (o) J. Li, A. Ambroise,
S. I. Yang, J. R. Diers, J. Seth, C. R. Wack, D. F. Bocian,
D. Holten and J. S. Lindsey, J. Am. Chem. Soc., 1999, 121,
8927; (p) R. F. Heck, Acc. Chem. Res., 1979, 12, 146.
Fig. 2 Cycling performance of CuB23 short nanotubes for cross-
coupling of cyclohexyl iodide and methyl acrylate. Reaction condi-
tions: a catalyst containing 0.01 mmol CuB23 short nanotubes,
cyclohexyl iodide (5.0 mmol), methyl acrylate (7.5 mmol), Na2CO3
(10.0 mmol), NMP (10 mL), T ¼ 353 K, t ¼ 12 h, stirring rate ¼ 800 rpm.
B leaching occurs, which rules out the loss of active phases aer
repetitive use. Moreover, the STEM, selected area electron
diffraction, and XRD results indicate that no crystallinity or
structural changes occur for the CuB23 short nanotubes aer
repeated use (Fig. S9 and S10a†). It appears that B oxidation on
the active surface of CuB23 is responsible for the deactivation, as
shown by EDS (Fig. S10b†) and XPS (Fig. S11†). In particular, the
boron oxide lm results in a decrease in SCu from 47.3 m2 gꢀ1 to
43.2 m2 gꢀ1, as it blocks the Cu-active sites and reduction of the
Cu electron density.
2 (a) L. Xu, M. J. Hilton, X. Zhang, P.-O. Norrby, Y.-D. Wu,
M. S. Sigman and O. Wiest, J. Am. Chem. Soc., 2014, 136,
1960; (b) C. Wu and J. (Steve) Zhou, J. Am. Chem. Soc.,
2014, 136, 650; (c) Y. M. A. Yamada, Y. Yuyama, T. Sato,
S. Fujikawa and Y. Uozumi, Angew. Chem., Int. Ed., 2014,
53, 127; (d) J.-H. Fan, W.-T. Wei, M.-B. Zhou, R.-J. Song and
J.-H. Li, Angew. Chem., Int. Ed., 2014, 53, 6650; (e) P. Liu,
Z. Dong, Z. Ye, W.-J. Wang and B.-G. Li, J. Mater. Chem. A,
2013, 1, 15469; (f) C. C. C. J. Seechurn, M. O. Kitching,
T. J. Colacot and V. Snieckus, Angew. Chem., Int. Ed., 2012,
51, 5062; (g) A. Molnar, Chem. Rev., 2011, 111, 2351; (h)
K. S. Bloome, R. L. McMahen and E. J. Alexanian, J. Am.
Chem. Soc., 2011, 133, 20146; (i) T. Mino, Y. Shirae,
Y. Sasai, M. Sakamoto and T. Fujita, J. Org. Chem., 2006,
71, 6834; (j) N. E. Leadbeater, Chem. Commun., 2005, 2881;
(k) C. M. Frech, L. J. W. Shimon and D. Milstein, Angew.
Chem., Int. Ed., 2005, 44, 1709; (l) J. C. Garcia-Martinez,
R. Lezutekong and R. M. Crooks, J. Am. Chem. Soc., 2005,
127, 5097; (m) M. T. Reetz and J. G. Vries, Chem. Commun.,
2004, 1559; (n) D. Gelman and S. L. Buchwald, Angew.
Chem., Int. Ed., 2003, 42, 5993; (o) R. Narayanan and
M. A. El-Sayed, J. Am. Chem. Soc., 2003, 125, 8340; (p)
M. T. Reetz and E. Westermann, Angew. Chem., Int. Ed.,
2000, 39, 165; (q) M. T. Reetz, G. Lohmer and
R. Schwickardi, Angew. Chem., Int. Ed., 1998, 37, 481; (r)
M. T. Reetz and G. Lohmer, Chem. Commun., 1996, 1921;
(s) M. T. Reetz, W. Helbig, S. A. Quaiser, U. Stimming,
N. Breuer and R. Vogel, Science, 1995, 267, 367.
Conclusions
In summary, we have prepared amorphous CuB23 alloy short
nanotubes for the rst time, using a solution plasma process,
and successfully used this catalyst in the Heck coupling of
inactivated alkyl halides and alkenes. We showed that amor-
phous CuB23 alloy short nanotubes can replace Pd and Ni
complexes for Heck coupling of inactivated alkyl iodides and
alkenes. Furthermore, alkyl bromides were tolerated. The
CuB23-short-nanotubes-catalyzed
protocol proceeds
via
coupling on the surfaces of the nanotubes, by single-electron
oxidative reactions. More importantly, the catalyst is cheaper
than Pd and Ni catalysts and no ligands are needed. Work to
extend the use of this new catalyst in organic synthesis is
underway in our laboratory.
Acknowledgements
This work was nancially supported by the National Natural
Science Foundation of China (21376033), the Sichuan Youth
Science and Technology Innovation Research Team Funding
Scheme (2013TD0005), the Cultivating programme of Middle
aged backbone teachers (HG0092), the Cultivating programme
for Excellent Innovation Team of Chengdu University of Tech-
nology (HY0084) and Innovative Experimental Items for College
Students of Sichuan Province (SZH1106CX04).
3 (a) T. Nishikata, Y. Noda, R. Fujimoto and T. Sakashita, J. Am.
Chem. Soc., 2013, 135, 16372; (b) C. Liu, S. Tang, D. Liu,
45842 | RSC Adv., 2014, 4, 45838–45843
This journal is © The Royal Society of Chemistry 2014