C O M M U N I C A T I O N S
and by the gold electrode, leading to increasing the photocurrent.
The quantum yields of 1/Au and 2/Au were estimated based on
the number of absorbed photons being 17 ( 7% and 35 ( 8%, re-
spectively.13 The remarkably large quantum yield for 2/Au as com-
pared to the value for 1/Au indicates that the long oligothiophene
chain can facilitate the generation and charge transport of photo-
current.
In summary, we have demonstrated an important role of the
tripodal rigid anchor in preparing well-organized SAMs of [60]-
fullerene-linked long oligothiophenes on the electrode to construct
highly efficient photovoltaic cells.
Figure 1. Photocurrent response of 1/Au irradiated with 400 nm light (0.65
mW cm-2) at -100 mV of bias vs Ag/AgCl.
Acknowledgment. This research was supported by Grants-in-
Aid for Scientific Research from the Ministry of Education, Culture,
Sports, Science and Technology, Japan.
reductions of the C60 moiety (Figure S2). The observation of these
well-defined redox waves indicates that the molecules are strongly
adsorbed on the surface very probably due to three-point connection.
In contrast to the three-point connection systems, the voltammo-
grams of SAMs of 3 (3/Au) and 4 (4/Au) with one-point connection
show poorly reversible waves, suggesting that the molecules are
sparsely attached to the surface and tend to be detached during the
reduction sweep. On the basis of the integrated charge of the first
reduction peak, surface coverages (Γ) are calculated as follows:
1/Au, 1.7 × 10-10 mol cm-2; 2/Au, 1.6 × 10-10 mol cm-2; 3/Au,
Supporting Information Available: The experimental procedures
and spectral data for all new compounds, cyclic voltammograms, ab-
sorption spectra, and action spectra of the SAMs. This material is avail-
References
(1) (a) Mirkin, C. A.; Caldwell, W. B. Tetrahedron 1996, 52, 5113-5130.
(b) Echegoyen, L.; Echegoyen, L. E. Acc. Chem. Res. 1998, 31, 593-601.
(c) Diederlich, F.; Go´mez-Lo´pez, M. Chem. Soc. ReV. 1999, 28, 263-277.
(2) (a) Chen, K.; Caldwell, W. B.; Mirkin, C. A. J. Am. Chem. Soc. 1993,
115, 1193-1194. (b) Chupa, J. A.; Xu, S.; Fischetti, R. F.; Strongin, R.
M.; McCauley, J. P., Jr.; Smith, A. B., III; Blasie, J. K. J. Am. Chem.
Soc. 1993, 115, 4383-4384. (c) Shi, X.; Caldwell, W. B.; Chen, K.;
Mirkin, C. A. J. Am. Chem. Soc. 1994, 116, 11598-11599. (d) Arias, F.;
God´ınez, L. A.; Wilson, S. R.; Kaifer, A. E.; Echegoyen, L. J. Am. Chem.
Soc. 1996, 118, 6086-6087. (e) Liu, S.-G.; Martineau, C.; Raimundo,
J.-M.; Roncali, J.; Echegoyen, L. Chem. Commun. 2001, 913-914.
(3) (a) Luo, C.; Guldi, D. M.; Maggini, M.; Menna, E.; Mondini, S.; Kotov,
N. A.; Prato, M. Angew. Chem., Int. Ed. 2000, 39, 3905-3909. (b) Kamat,
P. V.; Barazzouk, S.; Hotchandani, S.; Thomas, K. G. Chem. Eur. J. 2000,
6, 3914-3921. (c) Eckert, J.-F.; Nicoud, J.-F.; Nierengarten, J.-F.; Liu,
S.-G.; Echegoyen, L.; Barigelletti, F.; Armaroli, N.; Ouali, L.; Krasnikov,
V.; Hadziioannou, G. J. Am. Chem. Soc. 2000, 122, 7467-7479. (d) Ikeda,
A.; Hatano, T.; Shinkai, S.; Akiyama, T.; Yamada, S. J. Am. Chem. Soc.
2001, 123, 4855-4856.
(4) (a) Imahori, H.; Azuma, T.; Ajavakom, A.; Norieda, H.; Yamada, H.;
Sakata, Y. J. Phys. Chem. B 1999, 103, 7233-7237. (b) Imahori, H.;
Yamada, H.; Nishimura, Y.; Yamazaki, I.; Sakata, Y. J. Phys. Chem. B
2000, 104, 2099-2108. (c) Imahori, H.; Norieda, H.; Yamada, H.;
Nishimura, Y.; Yamazaki, I.; Sakata, Y.; Fukuzumi, S. J. Am. Chem. Soc.
2001, 123, 100-110.
(5) (a) Segura, J. L.; Mart´ın, N. J. Mater. Chem. 2000, 10, 2403-2435. (b)
Knorr, S.; Grupp, A.; Mehring, M.; Grube, G.; Effenberger, F. J. Chem.
Phys. 1999, 110, 3502-3508. (c) van Hal, P. A.; Knol, J.; Langeveld-
Voss, B. M. W.; Meskers, S. C. J.; Hummelen, J. C.; Janssen, R. A. J. J.
Phys. Chem. A 2000, 104, 5974-5988. (d) Yamashiro, T.; Aso, Y.;
Otsubo, T.; Tang, H.; Harima, Y.; Yamashita, K. Chem. Lett. 1999, 443-
444.
3.5 × 10-11 mol cm-2; 4/Au, 8.9 × 10-11 mol cm-2 11
. The small
surface coverage for 3/Au is due to its lying structure. Judging from
the other three surface coverages, it turns out that the three-armed
molecules 1 and 2 are more densely adsorbed than the one-armed
molecule 4. In addition, it is worth noting that the adsorbed amounts
of 1 and 2 are virtually the same, independent of the oligothiophene
length. These results indicate that the three-armed anchor molecules
can stand up on the surface by themselves, forming highly ordered
SAMs.
Photoelectrochemical measurements were performed in an argon-
saturated 0.1 mol dm-3 Na2SO4 solution containing 5 × 10-3 mol
dm-3 of methyl viologen (MV2+) as an electron carrier using the
modified Au electrode as a working electrode and a platinum
counter electrode at -100 mV bias against an Ag/AgCl reference
electrode under illumination of 400 nm light for 1/Au or 440 nm
for 2/Au, which is mainly absorbed by the oligothiophene chro-
mophore. The Au/1/MV2+/Pt cell showed a cathodic photoelectro-
chemical response as shown in Figure 1. The amount of generated
photocurrent for 1/Au (close to 1 mA in Figure 1) is remarkable as
compared to several nA scale usually observed for this type of
photovoltaic cells.12 The action spectrum of the Au/1/MV2+/Pt cell
(Figure S3) roughly agrees with the absorption spectrum on the
gold electrode (Figure S4). The cathodic photocurrent increases with
an increase of the negative bias of the gold electrode (Figure S5).
On the basis of the reported photodynamics of the oligo-
thiophene-[60]fullerene dyads,6 together with the results on similar
photoelectrochemcial cells,4 we can conclude that photoexcitation
of the quaterthiophene chromophore first induces ET from the
quaterthiophene to the C60 moiety to generate a net vectorial electron
flow from the gold cathode to the Pt counter electrode via MV2+
with the aid of applied bias. The photocurrent density is much larger
by a factor of about 190 than that observed for the Au/3/MV2+/Pt
cell. The Au/2/MV2+/Pt cell also revealed a large photoelectro-
chemical response, and its photocurrent density is about 6 times as
large as that observed for the Au/4/MV2+/Pt cell. The enhanced
photoresponses of 1/Au and 2/Au are primarily attributable to the
densely packed SAMs. However, it is interesting to note that the
enhancement ratios of the photocurrent much exceed the increased
ratios of the Γ values. The self-reliant standing of 1 and 2 on the
gold surface probably may suppress quenching of the excited states
of the oligothiophene chromophore by intermolecular interactions
(6) (a) Fujitsuka, M.; Ito, O.; Yamashiro, T.; Aso, Y.; Otsubo, T. J. Phys.
Chem. A 2000, 104, 4876-4881. (b) Fujitsuka, M.; Matsumoto, K.; Ito,
O.; Yamashiro, T.; Aso, Y.; Otsubo, T. Res. Chem. Intermed. 2001, 27,
73-88.
(7) (a) Whitesell, J. K.; Chang, H. K. Science 1993, 261, 73-76. (b) Fox, M.
A.; Whitesell, J. K.; McKerrow, A. J. Langmuir 1998, 14, 816-820. (c)
Tao, Y.; Tour, J. M. J. Org. Chem. 1999, 64, 1968-1971. (d) Guo, W.;
Galoppini, E.; Rydja, G.; Pardi, G. Tetrahedron Lett. 2000, 41, 7419-
7421. (e) Hu, J.; Mattern, D. L. J. Org. Chem. 2000, 65, 2277-2281. (f)
Galoppini, E.; Guo, W.; Qu, P.; Meyer, G. J. J. Am. Chem. Soc. 2001,
123, 4342-4343.
(8) Hirayama, D.; Yamashiro, T.; Takimiya, K.; Aso, Y.; Otsubo, T.; Norieda,
H.; Imahori, H.; Sakata, Y. Chem. Lett. 2000, 570-571.
(9) Heim, C.; Affeld, A.; Nieger, M.; Vo¨gtle, F. HelV. Chim. Acta 1999, 82,
746-759.
(10) Maggini, M.; Scorrano, G.; Prato, M. J. Am. Chem. Soc. 1993, 115, 9798-
9799.
(11) The occupied areas per molecule of 1/Au and 2/Au agree largely with
the calculated areas, assuming 1 and 2 are well-packed on the gold surface
with a perpendicular orientation.
(12) Lahav, M.; Heleg-Shabtai, V.; Wasserman, J.; Katz, E.; Willner, I.; Du¨rr,
H.; Hu, Y.-Z.; Bossmann, S. H. J. Am. Chem. Soc. 2000, 122, 11480-
11487.
(13) Photocurrent density/nA cm-2 (absorbance): 1/Au, 783 (0.006 at 400 nm);
2/Au, 1570 (0.006 at 440 nm). For comparison, it was estimated that the
quantum yield of 3/Au was less than 0.1% and that of 4/Au was about
5%.
JA016703D
9
J. AM. CHEM. SOC. VOL. 124, NO. 4, 2002 533