COMMUNICATIONS
[1] Reviews on allylmetal reagents: a) Y. Yamamoto, N. Asao, Chem. Rev.
1993, 93, 2207 ± 2293; b) W. R. Roush in Comprehensive Organic
Synthesis, Vol. 2 (Eds.: B. M. Trost, I. Fleming, C. H. Heathcock),
Pergamon, Oxford, 1991, pp. 1 ± 53; c) R. W. Hoffmann, Angew.
Chem. 1982, 94, 569; Angew. Chem. Int. Ed. Engl. 1982, 21, 555 ± 566.
[2] a) E. Negishi, M. J. Idacavage, Org. React. 1985, 33, 1 ± 246; b) A.
Pelter, K. Smith, H. C. Brown, Borane Reagents, Academic Press, New
York, 1988, pp. 310 ± 323; c) D. S. Matteson, Stereodirected Synthesis
with Organoboranes, Springer, Berlin, 1995, pp. 260 ± 310.
[3] a) H. Sakurai, Pure Appl. Chem. 1982, 54, 1 ± 22; b) A. Hosomi, Acc.
Chem. Soc. 1988, 21, 200 ± 206; c) I. Fleming in Comprehensive
Organic Synthesis, Vol. 2 (Eds.: B. M. Trost, I. Fleming, C. H. Heath-
cock), Pergamon, Oxford, 1991, pp. 563 ± 593; d) I. Fleming, Org.
React. 1994, 33, 1 ± 246; e) C. E. Masse, J. S. Panek, Chem. Rev. 1995,
95, 1293 ± 1316.
[4] Reviews of gem-dimetallic reagents: a) I. Marek, J.-F. Normant,
Chem. Rev. 1996, 96, 3241 ± 3267; b) I. Marek, Chem. Rev. 2000, 100,
2887 ± 2900; other kinds of allyldimetallic compounds: (Si, Al) c) E.-i.
Negishi, K. Akiyoshi, J. Am. Chem. Soc. 1988, 110, 646 ± 647; (Si, Si)
d) D. M. Hodgson, S. F. Barker, L. H. Mace, J. R. Moran, Chem.
Commun. 2001, 153 ± 154; e) B. Princet, H. Gardes-Gariglio, J. Pornet,
J. Organomet. Chem. 2000, 604, 186 ± 190; f) M. Lautens, P. H. M.
Delanghe, Angew. Chem. 1994, 106, 2557; Angew. Chem. Int. Ed. Engl.
1994, 33, 2448 ± 2450; g) M. Lautens, R. N. Ben, P. H. M. Delanghe,
Tetrahedron 1996, 52, 7221 ± 7234; (Si, Zr) h) A. N. Kasatkin, R. J.
Whitby, Tetrahedron Lett. 1999, 40, 9353 ± 9357; (Si, Sn) i) M. Lautens,
A. H. Huboux, B. Chin, J. Downer, Tetrahedron Lett. 1990, 31, 5829 ±
5832; (Sn, Sn) j) refs. [4f] and [4g]; k) H. J. Reich, J. W. Ringer, J. Org.
Chem. 1988, 53, 455 ± 457; l) see also ref. [4i]; m) D. Madec, J.-P.
Ferezou, Tetrahedron Lett. 1997, 38, 6657 ± 6660; n) D. Madec, J.-P.
Ferezou, Tetrahedron Lett. 1997, 38, 6661 ± 6664.
[14] Reaction of 1-silyl-1-stannyl-2-alkenes with acetals in the presence of
BF3 ´ OEt2 was reported in which
carbon ± tin bond cleaved
a
selectively over a carbon ± silicon bond giving rise to (E)-alkenylsi-
lanes. See, ref. [4g].
[15] For in situ generation of oxonium ions: a) A. Mekhalfia, I. E. Marko,
Tetrahedron Lett. 1991, 32, 4779; b) J. S. Panek, M. Yang, F. Xu, J. Org.
Chem. 1992, 57, 5790. See also, R. Noyori, S. Murata, M. Suzuki,
Tetrahedron 1981, 37, 3899.
[16] (E)-Olefinic selectivity can be explained by anti-SE2' transition states
of allylsilanes. See, a) T. Hayashi, M. Konishi, H. Ito, M. Kumada, J.
Am. Chem. Soc. 1982, 104, 4962 ± 4963; b) T. Hayashi, M. Konishi, M.
Kumada, J. Am. Chem. Soc. 1982, 104, 4963 ± 4965.
[17] Relative stereochemistry between benzyloxy and propyl groups of 3k
being threo was confirmed by protodeborylation of 3k to convert it
into 3-[benzyloxy(phenyl)methyl]-1-hexene that was consistent with
the product obtained by benzylation and protodesilylation of 4c.
Erythro selectivity using the (E)-allylic silane may be explained by
acyclic antiperiplanar transition states (see refs. [13d] and [15b]).
However, such a model cannot rationalize threo selectivity from the
(Z)-allylic silane. Although the reason for threo selectivity is not clear
at present, acyclic synclinal transition states (see, ref. [3e]) might be
involved considering the steric effect of a boryl group [Eq. (3)].
[18] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457 ± 2483.
[19] L. E. Overman, A. Castaneda, T. A. Blumenkopf, J. Am. Chem. Soc.
1986, 108, 1303 ± 1304.
[20] T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Synthesis,
3rd ed., Wiley, New York, 1999.
[5] a-Trimethylsilyl crotyl-9-BBN was obtained as a mixture of E/Z
isomers as a result of the allylic rearrangement. a) H. Yatagai, Y.
Yamamoto, K. Maruyama, J. Am. Chem. Soc. 1980, 102, 4548 ± 4550;
b) Y. Yamamoto, H. Yatagai, K. Maruyama, J. Am. Chem. Soc. 1981,
103, 3229 ± 3231; see also, c) Y. Yamamoto, Y. Saito, K. Maruyama, J.
Organomet. Chem. 1985, 292, 311 ± 318.
[6] A ꢀ2:1 mixture of pinacol (Z)- and (E)-a-trimethylsilyl crotylboro-
nate was obtained. a) D. J. S. Tsai, D. S. Matteson, Organometallics
1983, 2, 236 ± 241; see also, b) D. S. Matteson, D. Majumdar, Organo-
metallics 1983, 2, 230 ± 236.
[7] Allylation of activated carbonyl pyruvates by a-trimethylsilyl crotyl-9-
BBN was also reported. a) Y. Yamamoto, T. Komatsu, K. Maruyama,
J. Chem. Soc. Chem. Commun. 1983, 191 ± 192; b) Y. Yamamoto, K.
Maruyama, T. Komatsu, W. Ito, J. Org. Chem. 1986, 51, 886 ± 891.
[8] T. Hata, H. Kitagawa, H. Masai, T. Kurahashi, M. Shimizu, T. Hiyama,
Angew. Chem. 2001, 113, 812 ± 814; Angew. Chem. Int. Ed. 2001, 40,
790 ± 792.
Organoclay Derivatives in the Synthesis of
Macrocycles
Vasilios Georgakilas, Dimitrios Gournis, and
Dimitrios Petridis*
[9] Reviews of heteroatom-stabilized allylanions: a) Y. Yamamoto in
Comprehensive Organic Synthesis, Vol. 2 (Eds.: B. M. Trost, I. Flem-
ing, C. H. Heathcock), Pergamon, Oxford, 1991, pp. 55 ± 79; b) A. R.
Katritzky, M. Piffl, H. Lang, E. Anders, Chem. Rev. 1999, 99, 665 ± 722;
generation and reactions of a-chloroallyllithiums: c) T. L. Macdonald,
B. A. Narayanan, D. E. OꢁDell, J. Org. Chem. 1981, 46, 1504 ± 1506;
d) M. Julia, J.-N. Verpeaux, T. Zahneisen, Bull. Soc. Chim. Fr. 1994,
131, 539 ± 554.
[10] Synthesis of allylic boranes by reactions of a-chloroallyllithiums and
organoboron compounds: a) H. C. Brown, M. V. Rangaishenvi, Tet-
rahedron Lett. 1990, 31, 7113 ± 7114; b) H. C. Brown, M. V. Rangaish-
envi, Tetrahedron Lett. 1990, 31, 7115 ± 7118; c) H. C. Brown, M. V.
Rangaishenvi, S. Jayaraman, Organometallics 1992, 11, 1948 ± 1954;
d) H. C. Brown, S. Jayaraman, J. Org. Chem. 1993, 58, 6791 ± 6794.
[11] M. Suginome, T. Matsuda, Y. Ito, Organometallics 2000, 19, 4647± 4649.
[12] For example, TiCl4-promoted allylation of benzaldehyde with 2a
resulted in protodesilylation of 2a producing 1-propenylboronate as a
major isomer in low yield, while the same reaction mediated by Bu4NF
afforded a complex mixture.
The synthesis of macrocyclic systems is profoundly hin-
dered by reactions of participating components that lead to
the formation of mainly oligomeric or polymeric compounds.
To overcome this deficiency, template-assisted methods based
on metal coordination, electron-donor interactions, hydrogen
bonding, and electrostatic interactions have been successfully
developed.[1] In these reactions the templating agent plays the
essential role of assembling and organizing the participating
molecules in a way that makes possible a desirable reaction
pathway that would not occur in its absence.[2]
Another potential approach to effectively assemble and
organize compounds into well-defined supramolecular arrays
[*] Dr. D. Petridis, Dr. V. Georgakilas, Dr. D. Gournis
Institute of Materials Science
NCSR ªDemokritosº Ag. Paraskevi Attikis, Athens (Greece)
Fax : (30)1-6519430
[13] a) Review on coupling reactions of acetals: T. Mukaiyama, M.
Murakami, Synthesis 1987, 1043 ± 1054; b) A. Hosomi, M. Endo, H.
Sakurai, Chem. Lett. 1976, 941 ± 942; c) A. Hosomi, M. Ando, H.
Sakurai, Chem. Lett. 1986, 365 ± 368; d) J. S. Panek, M. Yang, J. Am.
Chem. Soc. 1991, 113, 6594 ± 6600.
Supporting information for this article is available on the WWW under
4286
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4022-4286 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2001, 40, No. 22