Nickel Complexes of Pro-Radical Ligands
FULL PAPER
383 nm (29600 mꢀ1 cmꢀ1), 492 (9200); IR (neat): n˜ =2959, 2897, 2864 w
(nCH), and 1616, 1605, 1583 s (nC=N) cmꢀ1. MS: m/z (%): 597 (100)
[M+H]+.
Chem. 1991, 30, 4654–4663; J. Seth, V. Palaniappan, D. F. Bocian,
Inorg. Chem. 1995, 34, 2201–2206; M. W. Renner, J. Fajer, J. Biol.
Inorg. Chem. 2001, 6, 823–830.
[Ni(L2)](Bu4N): Ni(OAc)2·4H2O (45 mg, 180 mmol) in ethanol (30 mL)
was added to a solution of H3L2 (50 mg, 90 mmol) in ethanol (20 mL).
After further addition of triethylamine (50 mL, 360 mmol) and Bu4NOH
(90 mL of a 1m solution in methanol, 90 mmol), the mixture was refluxed
for four hours. Two thirds of the solvent was then evaporated and, after
storage overnight at ꢀ208C, [Ni(L2)](Bu4N) was obtained as a dark-
orange precipitate. Single crystals were obtained by slow evaporation of
the ethanol (51 mg, 76%). Elemental analysis calcd (%) for
C52H81N3NiO3·H2O: C 71.55, H 9.58, N 4.81; found: C 71.17, H 9.53, N
4.85; 1H NMR (300 MHz, CD3OD, 298 K, TMS): d=8.7–8.65 (m, 1H),
8.33 (s, 1H), 7.80 (d, 4J=2.6 Hz, 1H), 7.7–7.6 (m, 1H), 7.21 (d, 4J=
2.5 Hz, 1H), 7.11 (d, 4J=2.5 Hz, 1H), 7.06 (d, 4J=2.6 Hz, 1H), 6.95–6.87
(m, 1H), 6.78–6.71 (m, 1H), 3.21–3.07 (m, 8H), 1.60–1.43 (m, 8H), 1.35
(s, 9H), 1.34 (s, 9H), 1.32–1.22 (m, 8H), 1,20 (s, 9H), 1.19 (s, 9H),
0.87 ppm (t, 3J=7.3 Hz, 12H); UV/Vis (CH2Cl2): lmax (e)=325 nm
(10600 mꢀ1 cmꢀ1), 366 (10400), 427 (9400); IR (neat): n˜ =2955, 2896, 2864
w (nCH), 1594 s (nC=O), and 1561, 1521 (nC=N) cmꢀ1. MS: m/z (%): 611
(100) [Ni(L2)]ꢀ.
[8] O. Kahn, J. P. Launay, Chemtronics 1988, 3, 140–151; P. Gütlich, Y.
Garcia, T. Woike, Coord. Chem. Rev. 2001, 219–221, 839–879.
[9] H. Ohtsu, K. Tanaka, Angew. Chem. 2004, 116, 6461–6463; Angew.
Chem. Int. Ed. 2004, 43, 6301–6303; H. Ohtsu, K. Tanaka, Chem.
Eur. J. 2005, 11, 3420–3426.
[10] [Cu(L1)] is the copper(ii) complex of H2L1 obtained by mixing Cu-
(ClO4)2·6H2O and the ligand in ethanol in the presence of NEt3.[5]
[11] A. Bçttcher, H. Elias, E.-G. Jäger, H. Langfelderova, M. Mazur, L.
Müller, H. Paulus, P. Pelikan, M. Rudolph, M. Valko, Inorg. Chem.
1993, 32, 4131–4138.
[12] H. M. Chang, H. H. Jaffe, Chem. Phys. Lett. 1973, 23, 146–148;
H. M. Chang, H. H. Jaffe, C. A. Masmandis, J. Phys. Chem. 1975, 79,
1118–1129; J. Takahashi, T. Shida, Bull. Chem. Soc. Jpn. 1994, 67,
2038–2046; J. Takahashi, T. Momose, T. Shida, Bull. Chem. Soc.
Jpn. 1994, 67, 964–977; L. J. Johnston, N. Mathivanan, F. Negri, W.
Siebrand, F. Zerbetto, Can. J. Chem. 1993, 71, 1655–1662; R. Liu,
K. Morokuma, A. M. Mebel, M. C. Lin, J. Phys. Chem. 1996, 100,
9314–9322; J. G. Radziszewski, M. Gil, A. Gorski, J. Spanget-
Larsen, J. Waluk, B. J. Mroz, J. Chem. Phys. 2001, 115, 9733–9738.
[13] [Zn(L1)] is the zinc(ii) complex of H2L1 obtained by mixing Zn-
(ClO4)2·6H2O and the ligand in ethanol in the presence of NEt3.
The phenoxylzinc radical species [Zn(L1)]+ exhibits an unresolved
isotropic (S=1/2) signal at giso =2.005 at 260 K. [Zn(L1)]2+ is a di-
radical species where the two spins are antiferromagnetically ex-
change-coupled (J estimated to be about ꢀ13 cmꢀ1); O. Rotthaus, O.
Jarjayes, F. Thomas, C. Philouze, E. Saint-Aman, J.-L. Pierre, unpub-
lished results.
[14] R. S. Drago, E. I. Baucom, Inorg. Chem. 1972, 11, 2064–2069; F. V.
Lovecchio, E. S. Gore, D. H. Busch, J. Am. Chem. Soc. 1974, 96,
3109–3118; H. J. Krüger, R. H. Holm, Inorg. Chem. 1987, 26, 3645–
3647; P. A. Connick, K.A. Macor, Inorg. Chem. 1991, 30, 4654; T. J.
Collins, T. R. Nichols, E. S. Uffelman, J. Am. Chem. Soc. 1991, 113,
4708–4709; F. Azevedo, M.A. Carrondo, B. Castro, M. Convery, D.
Domingues, C. Freire, M. T. Duarte, K. Nielsen, I. C. Santos, Inorg.
Chim. Acta 1994, 219, 43–54; D. Pinho, P. Gomes, C. Freire, B.
De Castro, Eur. J. Inorg. Chem. 2001, 1483–1493; Z. Xiao, B. O. Pat-
rick, D. Dolphin, Inorg. Chem. 2003, 42, 8125–8127.
[Ni(L3)](Bu4N)2: nBu4NOH (360 mL of
a 1m solution in methanol,
360 mmol) was added to a solution of H4L3 (50 mg, 87 mmol) and Ni-
(OAc)2·4H2O (26 mg, 104 mmol) in DMF (5 mL), and the reaction mix-
ture was stirred at 808C for four hours. The DMF was then distilled off
in vacuo and the raw product was purified over LH 20 (15 g) with metha-
nol as eluent. After evaporation of the solvent, [Ni(L3)](Bu4N)2 was ob-
tained as a red powder (47 mg, 48%). Single crystals were obtained by
slow evaporation of a diethyl ether/pentane solution. Elemental analysis
calcd (%) for C68H116N4NiO4·2H2O: C 71.12, H 10.53, N 4.88, Ni 5.11;
found: C 72.08, H 10.53, N 4.88, Ni 4.97. 1H NMR (300 MHz, CD2Cl2,
298 K, TMS): d=8.48 (dd, 3J=6.2, 4J=3.6 Hz, 2H), 7.77 (d, 4J=2.8 Hz,
2H), 6.69 (d, 4J=2.8 Hz, 2H), 6.43 (dd, 3J=6.2, 4J=3.6 Hz, 2H), 3.25–
3.19 (m, 16H), 1.42–1.21 (m, 34H), 1,18 (s, 18H), 1.06–1.00 (m, 16H),
0.68 ppm (t, 3J=7.2 Hz, 24H). UV/Vis (CH2Cl2): lmax (e)=341 nm
(13300 mꢀ1 cmꢀ1), 368 (14500), 391 sh (11400) 515 (600). IR (neat): n˜ =
2951, 2871 w (nCH) and 1604 s (nC=O) cmꢀ1; MS: m/z (%): 869 (100)
[{Ni(L3)}(Bu4N)]ꢀ, 627 (51) [{Ni(L3)}H]ꢀ, 313 [Ni(L3)]2ꢀ
.
[15] A similar experiment performed in CH3NO2 revealed a behavior
that is quite similar to that in CH2Cl2. The TC is, however, shifted to
240 K, a value corresponding to the melting point of the mixture
CH3NO2 + 0.1m TBAP.
[16] Y. Shimazaki, F. Tani, K. Fului, Y. Naruta, O. Yamauchi, J. Am.
Chem. Soc. 2003, 125, 10512–10513.
[17] This may be interpreted in different ways, such as fast relaxation,
changes in electronic distribution, or dimerization. We tend to favor
the former hypothesis since a similar behavior (EPR silence at
298 K) is observed for the pyridine adducts [Ni(L2)(Py)2] and
[Ni(L3)(Py)2]ꢀ.
[18] J. Müller, A. Kikuchi, E. Bill, T. Weyhermüller, P. Hildebrandt, L.
Ould-Moussa, K. Wieghardt, Inorg. Chim. Acta 2000, 297, 265–277;
Y. Shimazaki, S. Huth, S. Karasawa, S. Hirota, Y. Naruta, O. Yamau-
chi, Inorg. Chem. 2004, 43, 7816–7822.
[19] A. Aukauloo, X. Ottenwaelder, R. Ruiz, S. Poussereau, Y. Pei, Y.
Journaux, P. Fleurat, F. Volatron, B. Cervera, M. C. MuÇoz, Eur. J.
Inorg. Chem. 1999, 1067–1071; D. Herebian, E. Bothe, E. Bill, T.
Weyhermüller, K. Wieghardt, J. Am. Chem. Soc. 2001, 123, 10012–
10023; C.-H. Sieh, I.-J. Hsu, C.-H. Lee, S.-C. Ke, T.-Y. Wang, G.-H.
Lee, Y. Wang, J.-M. Chen, J.-F. Lee, W. F. Lians, Inorg. Chem. 2003,
42, 3925–3933; X. Ottenwaelder, R. Ruiz-Garcia, G. Blondin, R.
Carasco, J. Cano, D. Lexa, Y. Journaux, A. Aukauloo, Chem.
Commun. 2004, 504–505; S. Blanchard, F. Neese, E. Bothe, E. Bill,
T. Weyhermüller, K. Wieghardt, Inorg. Chem. 2005, 44, 3636–3656.
[20] The pyridine adduct of 2 decomposes significantly during the experi-
ment, thus precluding any determination of logb. The logb values
(mꢀ2) for Equation (1) as a function of T are: for 1+: 6.71ꢂ0.09
(298 K), 7.94ꢂ0.14 (263 K), and 8.76ꢂ0.18 (243 K); for 2: 7.26ꢂ
[1] J. Stubbe, W. A. van der Donk, Chem. Rev. 1998, 98, 705–762; M.
Fontecave, J.-L. Pierre, C. R. Acad. Sci. Paris Chimie 2001, 4, 531–
538; W. Kaim, Dalton Trans. 2003, 761–768.
[2] B. A. Jazdzewski, W. B. Tolman, Coord. Chem. Rev. 2000, 200–202,
633–685; S. Itoh, M. Taki, S. Fukuzumi, Coord. Chem. Rev. 2000,
198, 3–20; P. Chaudhuri, K. Wieghardt, Prog. Inorg. Chem. 2001,
50, 151–216, and references therein.
[3] F. Thomas, G. Gellon, I. Gautier-Luneau, E. Saint-Aman, J.-L.
Pierre, Angew. Chem. 2002, 114, 3173–3176; Angew. Chem. Int. Ed.
2002, 41, 3047–3050; A. Philibert, F. Thomas, C. Philouze, S.
Hamman, E. Saint-Aman, J.-L. Pierre, Chem. Eur. J. 2003, 9, 3803–
3812; F. Michel, F. Thomas, S. Hamman, E. Saint-Aman, J.-L.
Pierre, Chem. Eur. J. 2004, 10, 4115–4125; F. Michel, S. Torelli, F.
Thomas, C. Duboc, C. Philouze, C. Belle, S. Hamman, E. Saint-
Aman, J.-L. Pierre, Angew. Chem. 2005, 117, 442–445; Angew.
Chem. Int. Ed. 2005, 44, 438–441.
[4] E. Saint-Aman, S. MØnage, J. L. Pierre, E. Defrancq, G. Gellon,
New J. Chem. 1998, 22, 393–394.
[5] F. Thomas, O. Jarjayes, C. Duboc, C. Philouze, E. Saint-Aman, J.-L.
Pierre, Dalton Trans. 2004, 2662–2669.
[6] C. G. Pierpont, R. M. Buchanan, Coord. Chem. Rev. 1981, 38, 45–
87; C. G. Pierpont, C. W. Lange, Prog. Inorg. Chem. 1994, 41, 331–
442; C. G. Pierpont, Coord. Chem. Rev. 2001, 216–217, 99–125.
[7] A. Ghosh, T. Wondimagegn, E. Gonzalez, I. Halvorsen, D. Dolphin,
T. Niem, R. H. Felton, I. Fujita, J. Am. Chem. Soc. 1975, 97, 5288–
5290; D. Chang, T. Malinski, A. Ulman, K. M. Kadish, Inorg. Chem.
1984, 23, 817–824; K. Dongho, L. A. Miller, T. G. Spiro, Inorg.
Chem. 1986, 25, 2468–2470; P. A. Connick, K.A. Macor, Inorg.
Chem. Eur. J. 2006, 12, 2293 – 2302
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2301