JOURNAL OF
POLYMER SCIENCE
WWW.POLYMERCHEMISTRY.ORG
ARTICLE
TABLE 3 Molecular Characteristics of the Homo- and Copoly-
In conclusion, the monomer structure, or in other words the
steric hindrance close to the isocyanate group influences the
progress of the reaction with the chiral half-titanocene complex,
leading either to polymerization or cyclotrimerization products.
mers Synthesized
b
Sample
Yield (%)
Mw
I (Mw/Mn)b
PHIC (1)
66
8500
1.11
1.17
1.32
-
PHIC (2)
21
9900
REFERENCES AND NOTES
PHIC (3)
71
10100
Bimodal
Insol.
16,700
4800
PBzIC
40a
75a
23
1 T. E. Patten, B. M. Novak, J. Am. Chem. Soc. 1996, 118,
1906–1916.
PTEOSiPIC
PEHIC-co-PHIC
PBzIC-b-PHIC
-
2 (a) S. Mourmouris, K. Kostakis, M. Pitsikalis, N.
Hadjichristidis, J. Polym. Sci. Part A: Polym. Chem. 2005, 43,
6503–6514; (b) A. Touris, K. Kostakis, S. Mourmouris, V.
Kotzabasakis, M. Pitsikalis, N. Hadjichristidis, Macromolecules
2008, 41, 2426–2438.
1.11
1.21
20
a
Calculated in 1H NMR spectrum.
By SEC in tetrahydrofuran at 408C.
b
3 D. Priftis, N. Petzetakis, G. Sakellariou, M. Pitsikalis, D.
Baskaran, J. W. Mays, N. Hadjichristidis, Macromolecules 2009,
42, 3340–3346.
disengagement from the metal. The formation of a copolymer
of the type PBzIC-b-P(BzIC-co-HIC) is more possible. The
homopolymerization of HIC can be ruled out taking into
account the SEC and NMR data.
4 S. Mayer, R. Zentel, Prog. Polym. Sci. 2001, 26, 1973–2013.
5 T. Satoh, R. Ihara, D. Kawato, N. Nishikawa, D. Suemasa, Y.
Kondo, K. Fuchise, R. Sakai, T. Kakuchi, Macromolecules 2012,
45, 3677–3686.
A strong evidence for the copolymer formation is the solu-
bility of the final product in chloroform, where PBzIC homo-
polymer is almost insoluble. From the 1H NMR spectrum,
the composition of the copolymer in BzIC is equal to 70%.
Further studies are in progress to elucidate the structure of
this copolymer. The molecular characteristics of the copoly-
mers along with characteristic homopolymers are given in
Table 3.
6 K. Ute, T. Asai, Y. Fukunishi, K. Hatada, Polym. J. 1995, 27,
445–448.
7 B. Durairaj, A. W. Dimock, E. T. Samulski, M. T. Shaw, J.
Polym. Sci. Part A: Polym. Chem. 1989, 27, 3211–3225.
8 M. Masnadi, R. Jamjah, S. Ahmadjo, M. Nekoomanesh,
Synth. React. Inorg. Met. Org. Chem. 2006, 36, 543–547.
9 M. Frauenkron, N. Tzavellas, N. Klouras, C. P. Raptopoulou,
Monatsh. Chem. 1996, 127, 1137–1143.
10 C. Spino, M. A. Joly, C. Godbout, M. Arbour, J. Org. Chem.
2005, 70, 6118–6121.
CONCLUSIONS
11 P. N. Shah, J. Min, C.-G. Chae, N. Nishikawa, D. Suemasa, T.
Kakuchi, T. Satoh, J.-S. Lee, Macromolecules 2012, 45, 8961–8969.
A new chiral, half-titanocene, alkoxy complex [CpTiCl2(O-(S)-
2-Bu)] was synthesized. The aforementioned complex indu-
ces asymmetric polymerization of non chiral isocyanates.
The (S)-2-butoxy group, which is ultimately covalently
bonded to the end of the polymer chain, induces the poly-
merization of only the left-handed (M) helix. The products
have relatively narrow molecular weight distributions, and
the polymerization reaction is well controlled. Sterically hin-
dered monomers, such as 2-ethylhexyl isocyanate and phenyl
isocyanate are exclusively cyclotrimerized producing the cor-
responding isocyanurates. However, statistical copolymeriza-
tion of 2-ethylhexyl isocyanate and hexyl isocyanate was
achieved, but with limited incorporation of 2-ethylhexyl iso-
cyanate units along the polymer chain. Benzyl isocyanate
was polymerized to a low molecular weight polymer, due to
termination reactions (cyclotrimerization). The product has
limited solubility in common solvents and only a copolymer
with hexyl isocyanate was dissolved in chloroform. The poly-
merization of 3-(triethoxysilyl)propyl isocyanate proceeds to
a product which is less soluble in common solvents, prob-
ably due to partial hydrolysis of the triethoxysilyl groups
during the termination process.
12 (a) J. F. Mano, N. T. Correia, J. J. M. Ramos, J. Chem. Soc.
Faraday Trans. 1995, 91, 2003–2007; (b) P. Samori, C. Ecker, I.
Gossl, P. A. J. de Witte, J. J. L. M. Cornelissen, G. A.
Metselaar, M. B. J. Otten, A. E. Rowan, R. J. M. Nolte, J. P.
Rabe, Macromolecules 2002, 35, 5290–5294.
13 A. Vazaios, M. Pitsikalis, N. Hadjichristidis, J. Polym. Sci.
Part A: Polym. Chem. 2003, 41, 3094–3102.
14 X. Xu, X. Ni, Z. Shen, Polym. Bull. 2005, 53, 81–88.
15 Y. P. Iwakara, K. Uno, N. Kobayashi, J. Polym. Sci A-1 1968,
6, 2611–2620.
16 B. Durairaj, E. T. Samulski, M. T. Shaw, Macromolecules
1990, 23, 1229–1234.
17 M. Ozaki, Y. Obora, Y. Tada, Y. Ishii, J. Organomet. Chem.
2013, 741, 109–113.
18 J.-S. Lee, S.-W. Ryu, Macromolecules 1999, 32, 2085–2087.
19 (a) V. E. Shashoua, W. Sweeney, R. J. Tietz, J. Am. Chem.
Soc. 1960, 82, 866–873; (b) V. E. Shashoua, J. Am. Chem. Soc.
1959, 81, 3156.
20 (a) Y. D. Shin, S. Y. Kim, J. H. Ahn, J. S. Lee, Macromole-
cules 2001, 34, 2408–2410; (b) G. Zorba, A. Vazaios, M.
Pitsikalis, N. Hadjichristidis, J. Polym. Sci. Part A: Polym.
Chem. 2005, 43, 3533–3542.
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2015, 53, 2141–2151
2151