Rev. 2014, 43, 4633-4657. (c) Zeng, X. Chem. Rev. 2013, 113, 6864-6900. (d) Pellissier, H. Chem.
Rev. 2013, 113, 442-524.
4. (a) Crank, G.; Neville, M.; Ryden, R. J. Med. Chem. 1973, 16, 1402-1405. (b) Madabhushi, C.
S.; Mallu, K. K. R.; Vangipuram, V. S.; Kurva, S.; Poornachandra, Y.; Kumar, C. G. Bioorg.
Med. Chem. Lett. 2014, 24, 4822-4825. (c) Hallur, G.; Jimeno, A.; Dalrymple, S.; Zhu, T.;
Jung, M. K.; Hidalgo, M.; Isaacs, J. T.; Sukumar, S.; Hamel, E.; Khan, S. R. J. Med. Chem.
2006, 49, 2357. (d) Sharma, S. K.; Wu, Y.; Steinbergs, N.; Crowley, M. L.; Hanson, A. S.;
Casero, R. A.; Woster, P. M. J. Med. Chem. 2010, 53, 5197.
5. (a) Gale, P. A. Acc. Chem. Res. 2011, 44, 216. (b) Odago, M. O.; Collabello, D. M.; Lees, A.
J. Tetrahedron, 2010, 66, 7465. (c) Caltagirone, C.; Gale, P. A. Chem. Soc. Rev. 2009, 38,
520.
6. Serdyuk, O. V.; Heckel, C. M.; Tsogoeva, S. B. Org. Biomol. Chem. 2013, 11, 7051-7071.
7. (a) Kearney, P. C.; Frenandez, M.; Flygare, J. A. J. Org. Chem. 1998, 63, 196-200. (b) Patil, D. G.;
Chedekel, M. R. J. Org. Chem. 1984, 49, 997-1000. (c) Kasmi, S.; Hamelin, J.; Benhaoua, H.
Tetrahedron Lett. 1998, 39, 8093-8096. (d) Kidwai, M.; Venkataramanan, R.; Dave, B. Green Chem.
2001, 3, 278-279. (e) Paul, S.; Gupta, M.; Gupta, R.; Loupy, A. Synthesis 2002, 75-78. (f) Heinelt, U.;
Schultheis, D.; Jager, S.; Lindenmaire, M.; Pollex, A.; Beckmann, H. S. G. Tetrahedron 2004, 60,
9883.
8. Štrukil, V.; Igrc, M. D.; Fábián, L.; Eckert-Maksić, M.; Childs, S. L.; Reid, D. G.; Duer, M. J.;
Halasz, I.; Mottillo, C.; Friščić, T. Green Chem. 2012, 14, 2462-2473.
9. (a) Kaupp, G.; Schmeyers, J.; Boy, J. Tetrahedron, 2000, 56, 6899. (b) Li, J.-P.; Wang, Y.-L.;
Wang, H.; Luo, Q.-F.; and Wang, X.-Y. Synth. Commun., 2001, 31, 781.
10. Chau, C.-M.; Chuan T. -M.; Liu, K. -M. RSC Adv. 2014, 4, 1276-1282.
11. Mane, M.; Balaskar, R.; Gavade, S.; Pabrekar, P.; Mane, D. Arab. J. Chem. 2013, 6, 423.
12. (a) Maddani, M. R.; and Prabhu, K. R. J. Org. Chem. 2010, 75, 2327. (b) Sharma, S. Synthesis
1978, 803-820. (c) Staab, H. A. Angew. Chem. Int. Ed. Engl. 1962, 1, 351-367.
13. (a) Jain, A.; Sharma, S. Tetrahedron Lett. 2014, 55, 6051. (b) Sharma S.; Basavaraju, K. C.;
Singh, A. K. Org. Lett. 2014, 16, 3974. (c) Singh, K.; Singh, A. K.; Singh, D.; Singh, R.;
Sharma S. Catal. Sci. Tech. 2016, 6, 3723.
14. (a) Boyer, J. H.; Ramakrishnan, V. T. J Org. Chem. 1972, 37, 1360. (b) Tanaka, S.; Uemura,
S.; Okano, M. Bull. Chem. Soc. Jpn. 1977, 50, 2785. (c) Arisawa, M.; Ashikawa, M.; Suwa,
A.; Yamaguchi, M.; Tetrahedron Lett. 2005, 46, 1727.
15. (a) Tu, H.-Y.; Hu, B.-L.; Deng, C.-L.; and Zhang, X.-G. Chem. Commun. 2015, 51, 15558. (b)
Danen, W. C.; and Newkirk, D. D.; J. Am. Chem. Soc. 1976, 98, 516.
16. Saegusa, T.; Kobayashi, S.; Ito, Y. J. Org. Chem. 1970, 86, 2118.
17. Sharma, S.; Maurya, R. A.; Min, K.-I.; Jeong, G.-Y.; Kim, D.-P. Angew. Chem., Int. Ed.
2013, 52, 7564.
18. General procedure for thiourea synthesis (Figure 1). To a 10 mL round bottom flask were
added isocyanide 3a (103 mg, 1.0 equiv.) and DTBS (5 mmol, 890 mg). Round bottomed flask
was filled with N2. The above reaction mixture was allowed to stir at 120 °C for 5 h and
monitored by TLC. After complete consumption of isocyanide 3a, the reaction mixture was
cooled down to 60 °C and piperidine 8a (100 mg, 1.2 equiv.) was added and further stir for 1
h, the reaction mixture was precipitated. The resulting precipitate was filtered and washed with
cold ether to obtain pure product 9a. N-Phenylpiperidine-1-carbothioamide (9a). White solid
1
(191 mg, 87% yield); Rf = 0.52 (ethyl acetate/hexanes = 35:65); melting point: 96 °C. H
NMR (500 MHz, CDCl3) δ 1.66 (s, 6H), 3.76-3.78 (m, 4H), 7.09 (t, J = 8 Hz, 2H),7.13 (d, J =
13
7.5 Hz, 1H), 7.17 (s, 1H), 7.30 (t, J = 7.5 Hz, 2H); C NMR (125 MHz, CDCl3) δ 24.2, 25.6,
50.1, 122.7, 124.9, 129.2, 140.5, 183.0.