4416
J. Z. Deng et al. / Bioorg. Med. Chem. Lett. 15 (2005) 4411–4416
7. The inhibition constants (Ki) versus thrombin (factor IIa)
and factor Xa for each compound and the concentration
needed to double the activated partial thromboplastin
time (2xaPTT) in human plasma (if Ki < 15 nM) were
determined: Lewis, S. D.; Ng, A. S.; Lyle, E. A.; Mellott,
M. J.; Appelby, S. D.; Brady, S. F.; Stauffer, K. S.; Sisko,
J. T.; Mao, S.-S.; Veber, D. F.; Nutt, R. F.; Lynch, J. J.;
Cook, J. J.; Gardell, S. J.; Shafer, J. A. Thromb. Haemost.
1995, 74, 1107.
resulting arylacetonitrile 46 was hydrolyzed to give the
desired phenyl acetic acid 41.
Thrombin-inhibitor X-ray crystal structures, in combi-
nation with the installation of binding elements
optimized within the pyrazinone series of thrombin
inhibitors, were utilized to transform a weak triazolo-
pyrimidine lead into a series of potent oxazolopyridines.
A modification intended to attenuate plasma protein
binding (i.e., conversion of the P3 pyridine to a piperi-
dine) conferred significant factor Xa activity to this
series. Ultimately, these dual thrombin/factor Xa inhib-
itors demonstrated excellent in vitro and in vivo antico-
agulant efficacy.
8. The composition of the oxazole ring is also important as
the isomer i incurs a 180-fold and the imidzaole ii a 12-fold
potency loss versus 5.
N
N
H
N
N
H
N
NH
F
F
F
F
O
N
Cl
Cl
References and notes
1. Diener, H. C. Cerebrovasc. Dis. 2004, 17, 16; Gustafsson,
D.; Bylund, R.; Antonsson, T.; Nilsson, I.; Nystrom, J-E.;
Eriksson, U.; Bredberg, U.; Tegger-Nilsson, A-C. Nat.
Rev. Drug Discov. 2004, 3, 649.
2. Nar, H.; Bauer, M.; Schmid, A.; Stassen, J.-M.; Wienen,
W.; Priepke, H. W. M.; Kauffmann, I. K.; Ries, U. W.;
Hauel, N. H. Structure 2001, 9, 29; Kranjc, A.; Kikelj, D.
Curr. Med. Chem. 2004, 11, 2535.
3. Burgey, C. S.; Robinson, K. A.; Lyle, T. A.; Nantermet, P.
G.; Selnick, H. G.; Isaacs, R. C. A.; Lewis, S. D.; Lucas,
B. J.; Krueger, J. A.; Singh, R.; Miller-Stein, C.; White, R.
B.; Wong, B.; Lyle, E. A.; Stranieri, M. T.; Cook, J. J.;
McMasters, D. R.; Pellicore, J. M.; Pal, S.; Wallace, A. A.;
Clayton, F. C.; Bohn, D.; Welsh, D. C.; Lynch, J. J., Jr.;
Yan, Y.; Chen, Z.; Kuo, L.; Gardell, S. S. J.; Shafer, J. A.;
Vacca, J. P. Bioorg. Med. Chem. 2003, 13, 1353; Burgey,
C. S.; Robinson, K. A.; Lyle, T. A.; Sanderson, P. E. J.;
Lewis, S. D.; Lucas, B. J.; Krueger, J. A.; Singh, R.;
Miller-Stein, C.; White, R. B.; Wong, B.; Lyle, E. A.;
Williams, P. D.; Coburn, C. A.; Dorsey, B. D.; Barrow, J.
C.; Stranieri, M. T.; Holahan, M. A.; Sitko, G. R.; Cook,
J. J.; McMasters, D. R.; McDonough, C. M.; Sanders, W.
M.; Wallace, A. A.; Clayton, F. C.; Bohn, D.; Leonard, Y.
M., Jr.; Detwiler, T. J., Jr.; Lynch, J. J., Jr.; Yan, Y.;
Chen, Z.; Kuo, L.; Gardell, S. J.; Shafer, J. A.; Vacca, J. P.
J. Med. Chem. 2003, 46, 461.
i
ii
Ki = 290 nM
Ki = 4500 nM
9. Young, M. B.; Barrow, J. C.; Glass, K. L.; Lundell, G. F.;
Newton, C. L.; Pellicore, J. M.; Rittle, K. E.; Selnick, H.
G.; Stauffer, K. J.; Vacca, J. P.; Williams, P. D.; Bohn, D.;
Clayton, F. C.; Cook, J. J.; Krueger, J. A.; Kuo, L. C.;
Lewis, S. D.; Lucas, B. J.; McMasters, D. R.; Miller-Stein,
C.; Pietrak, B. L.; Wallace, A. A.; White, R. B.; Wong, B.;
Yan, Y.; Nantermet, P. G. J. Med. Chem. 2004, 47, 2995.
10. Tucker, T. J.; Lumma, W. C.; Lewis, S. D.; Gardell, S. J.;
Lucas, B. J.; Baskin, E. P.; Woltmann, R.; Lynch, J. J.;
Lyle, E. A.; Appleby, S. D.; Chen, I-W.; Dancheck, K. B.;
Vacca, J. P. J. Med. Chem. 1997, 40, 1565.
11. The conformation of the piperidine nitrogen cannot be
unequivocally assigned based upon electron density gen-
erated in this X-ray experiment. The other conformation is
possible in that it could benefit from a cation–p interac-
tion; however, this scenario is unlikely due to the
argument outlined in the text.
12. To reproduce the geometries observed in the 21-IIa crystal
structure for the interactions between the P2 NH and
Gly216, and between the triazole and C220, the P1 group
was fixed in the S1 pocket by holding the carbon atom
para to the triazole fixed, and the exocyclic N–O(Gly216)
˚
distance was held at 3.3 0.1 A.
4. Williams, P.D.; Coburn, C.; Burgey, C.S.; Morrissette,
M.M. WO 02/064211
5. Fairlie, D. P.; Tyndall, J. D. A.; Reid, R. C.; Wong, A. K.;
Abbenante, G.; Scanlon, M. J.; March, D. R.; Bergman,
D. A.; Chai, C. L. L.; Burkett, B. A. J. Med. Chem. 2000,
43, 1271.
13. Reported as the number of carotid artery vessels
(n = 6) occluding after a 10 lg/kg/min 180 min infusion
(FeCl3 arterial injury is initiated after 120 min, fol-
lowed by a 60 min observation period). Kurz, M. D.;
Main, B. W.; Sandusky, G. E. Thromb. Res. 1990, 60,
269.
6. Steiner, T. Angew. Chem. Int. Ed. 2002, 41, 48; Jeffrey, G.
A. An Introduction to Hydrogen Bonding; Oxford Univer-
sity Press: Oxford, 1997.
14. Burgey, C.S.; Deng, Z.J. US 2003/0225131 A1.
15. Deluca, M. R.; Kerwin, S. M. Tetrahedron 1997,
53, 454.