K. Takasu et al. / Tetrahedron Letters 42 (2001) 8489–8491
Table 2. Intramolecular Michael–aldol reaction of nonracemic 5
8491
Run
Substrate (% ee)
Michael–aldol conditions
Temperature
11
Reagentsa
% Yieldb
% eec
1
2
3
4
(+)-5a (66)
(+)-5b (79)
(+)-5b (79)
(+)-5b (79)
iPr2NEt, TMSOTf
NEt3, TMSOTf
NEt3, TMSOTf
(S)-8b, TMSOTf
−30°C
−30°C
rt
79
29
54
89
66
78
78
77
rt
a Reaction was carried out with 5 (1 equiv.), amine (3.2 equiv.), TMSOTf (3 equiv.) in CH2Cl2.
b Overall yields from 5 in three steps.
c All enantiomeric excesses were determined through chiral HPLC analysis using a Chiralcel OJ column after transformation into 12.
The best result was accomplished by the use of amine
(S)-8b along with TMSOTf at room temperature (run
4).
3. (a) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S.
C. J. Chem. Soc., Chem. Commun. 1980, 902–903; (b)
Leimner, J.; Marschall, H.; Meier, N.; Weyerstahl, P.
Chem. Lett. 1984, 1769–1772; (c) De Jesus, A. E.; Gorst-
Allman, C. P.; Steyn, P. S.; Van Heerden, F. R.; Vleg-
gaar, R.; Wessels, P. L.; Hull, W. E. J. Chem. Soc.,
Perkin Trans. 1 1983, 1863–1868.
4. For recent examples, see: (a) Haque, A.; Ghatak, A.;
Ghosh, S.; Ghoshal, N. J. Org. Chem. 1997, 62, 5211–
5214; (b) Winkler, J. D.; Doherty, E. M. J. Am. Chem.
Soc. 1999, 121, 7425–7426; (c) Nishimura, T.; Ohe, K.;
Uemura, S. J. Am. Chem. Soc. 1999, 121, 2645–2646.
5. Methods of Organic Chemistry (Houben–Weyl); De Mei-
jere, A., Ed.; Thieme: Stuttgart, 1997; Vol. E17e.
6. (a) Narasaka, K.; Hayashi, Y.; Shimadzu, H.; Niihata, S.
J. Am. Chem. Soc. 1992, 114, 8869–8885; (b) Yoshida,
M.; Ismail, M. A.-H.; Nemoto, H.; Ihara, M. J. Chem.
Soc., Perkin Trans. 1 2000, 2629–2635; (c) Chen, C.;
Chang, V.; Cai, X.; Duesler, E.; Mariano, P. S. J. Am.
Chem. Soc. 2001, 123, 6433–6434.
The absolute configurations of 5a and 10a were deter-
mined by correlation with one of the known compound
12a after the derivatization.2b In consequence, the chi-
ralities of (+)-5a and (+)-10a were assigned as (4S) and
(1S,2S,3R,6S,8S), respectively. The predominance of
the introduced chirality during enantioselective depro-
tonation reaction of 3a was consistent with the estab-
lished rules by Simpkins.7a According to this, the
absolute configurations of (+)-5b and (+)-10b might be
(4R) and (1S,2S,3R,6R,8S), respectively.14
In summary, we have demonstrated the asymmetric
syntheses of tricyclo[4.2.1.03,8]nonanes from Cs symmet-
ric cyclohexanones by means of enantioselective depro-
tonation, followed by intramolecular Michael–aldol
reaction. It is worth mentioning that five stereogenic
centers of 10 could be constructed with up to 78% ee in
the above operations.
7. For reviews, see: (a) Simpkins, N. S. Tetrahedron: Asym-
metry 1991, 2, 1–26; (b) Koga, K.; Shindo, M. J. Synth.
Org. Chem. Jpn. 1995, 53, 1021–1032; (c) O’Brien, P. J.
Chem. Soc., Perkin Trans. 1 1998, 1439–1457.
8. Kropf, J. E.; Weinreb, S. M. Chem. Commun. 1998,
2357–2358.
Acknowledgements
9. (a) Shirai, R.; Tanaka, M.; Koga, K. J. Am. Chem. Soc.
1986, 108, 543–545; (b) Bunn, B. J.; Cox, P. J.; Simpkins,
N. S. Tetrahedron 1993, 49, 207–218.
This work was partly supported by Grant-in-Aid for
Encouragement of Young Scientists (No. 12771347)
from the Ministry of Education, Culture, Sports, Sci-
ence and Technology, Japan.
10. Compound 3b was synthesized according to the reported
procedures with minor modifications.1b
11. Izawa, H.; Shirai, R.; Kawasaki, H.; Kim, H.-D.; Koga,
K. Tetrahedron Lett. 1989, 30, 7221–7224.
12. Aldous, D. J.; Dutton, W. M.; Steel, P. G. Tetrahedron:
Asymmetry 2000, 11, 2455–2462.
References
1. Racemic version: (a) Ihara, M.; Ohnishi, M.; Takano,
M.; Makita, K.; Taniguchi, N.; Fukumoto, K. J. Am.
Chem. Soc. 1992, 114, 4408–4410; (b) Ihara, M.;
Taniguchi, T.; Makita, K.; Takano, M.; Ohnishi, M.;
Taniguchi, N.; Fukumoto, K.; Kabuto, C. J. Am. Chem.
Soc. 1993, 115, 8107–8115; (c) Ihara, M.; Taniguchi, T.;
Yamada, M.; Tokunaga, Y.; Fukumoto, K. Tetrahedron
Lett. 1995, 36, 8071–8074.
2. Asymmetric version: (a) Takasu, K.; Ueno, M.; Ihara, M.
Tetrahedron Lett. 2000, 41, 2145–2148; (b) Takasu, K.;
Misawa, K.; Yamada, M.; Furuta, Y.; Taniguchi, T.;
Ihara, M. Chem. Commun. 2000, 1739–1740; (c) Takasu,
K.; Ueno, M.; Ihara, M. J. Org. Chem. 2001, 66, 4667–
4672.
13. Spectral data for 11b; colorless prisms: mp 56.5–57.5°C
1
(as the racemate); H NMR (CDCl3) l: 0.91 (3H, s), 1.01
(3H, s), 1.54–1.77 (8H, m), 2.16–2.24 (1H, m), 2.40–2.75
(1H, br s), 2.64 (2H, dd, J=12.1, 4.9 Hz), 3.75 (1H, dd,
J=11.0, 4.4 Hz), 3.90 (1H, dd, J=11.0, 8.0 Hz); 13C
NMR (CDCl3) l: 19.5, 20.3, 27.7, 30.5, 30.8, 40.0, 41.7,
43.7, 45.3, 47.5, 64.4, 74.2; HRMS calcd for C12H20O2
196.1462 (M+), found 196.1443.
14. Although the absolute configurations of (+)-5a and (+)-5b
would be the same stereochemical sense, the (R) and (S)
symbols are defined as opposite to each other according
to the IUPAC rule. Similarly, the RS designations of 10a
and 10b are not identical.