1308
J . Org. Chem. 2002, 67, 1308-1313
A High ly Dia ster eoselective Syn th esis of (1R)-(+)-Ca m p h or -Ba sed
Ch ir a l Allen es a n d Th eir Asym m etr ic Hyd r obor a tion -Oxid a tion
Rea ction s†
Shang-Cheng Hung, Yen-Fang Wen, J ia-Wen Chang, Chun-Chen Liao, and Biing-J iun Uang*
Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China
bjuang@mx.nthu.edu.tw
Received October 16, 2001
Synthesis of camphor derived chiral allenes and their hydroboration-oxidation reactions are
described. Reaction of (1R)-(+)-camphor with alkynyllithium followed by the reduction of the resulted
propargyl alcohol derivatives using AlH3 furnished chiral allenes 2a -g in excellent yields with
high diastereoselectivity. Reduction of the propargyl alcohols with aluminum hydride proceeded
through selective intermolecular anti-addition of hydride ion. The stereochemistry of the chiral
allenes 2 was assigned based on lanthanide shift studies and chemical correlations. Diastereo-
selectivity was observed in the hydroboration-oxidation of 2 which produced a mixture of (E,R)
and (E,S) stereoisomers in a ratio of 6:1 to 18:1.
In tr od u ction
a general, simple and efficient means of synthesizing
chiral allenes for further usage in organic synthesis, we
report herein a substrate-controlled asymmetric synthe-
sis of camphor-derived chiral allenes and the stereochem-
ical course of their hydroboration-oxidation reactions.
Chiral allenes gained significant importance as versa-
tile intermediates for asymmetric synthesis via the axial
to centered chirality transfer.1 Recently chiral allenes are
explored as potential chiral synthons in the synthesis of
bioactive molecules and natural products.1n,s,2 The SN2′
addition of nucleophiles to suitably derivatized, optically
active propargyl derivatives is one of the most widely
used routes for the asymmetric synthesis of chiral
allenes.1e,3,4 In conjunction with our program to develop
Resu lts a n d Discu ssion
Most of the reported synthetic procedures for the chiral
allenes made use of enantiomerically enriched chiral
compounds either as substrates5 or as reagents.6 We have
envisaged the synthesis of chiral allenes through chiral
propargyl alcohols. Reaction of (1R)-(+)-camphor and
lithium acetylides in THF gave the corresponding chiral
alcohols 1a -g with >95% diastereoselectivity (Table 1)
† A preliminary result was reported: Uang, B.-J .; Po, S.-C.; Hung,
S.-C.; Liu, H.-H.; Hsu, C.-Y.; Lin, Y.-S.; Chang, J .-W. Pure Appl. Chem.
1997, 69, 615.
(1) (a) Taylor, D. R. Chem. Rev. 1967, 67, 317. (b) Smadja, W. Chem.
Rev. 1983, 83, 263. (c) Coppola, G. M.; Schuster, H. F. Allenes in
Organic Synthesis; Wiley: New York, 1984. (d) Patai, S. The Chemistry
of Ketenes, Allenes, and related Compounds; J ohn Wiley & Sons: New
York, 1984; parts 1 and 2. (e) Pasto, D. J . Tetrahedron 1984, 40, 2805.
(f) Danheiser, R. L.; Stoner, E. J .; Koyama, H.; Yamashita, D. S.; Klade,
C. A. J . Am. Chem. Soc. 1989, 111, 4407. (g) Alexakis, A.; Marek, I.;
Mangeney, P.; Normant, J . F. J . Am. Chem. Soc. 1990, 112, 8042. (h)
Marshall, J . A.; Tang, Y. J . Org. Chem. 1993, 58, 3233. (i) Buynak, J .
D.; Borate, H. B.; Lamb, G. W.; Khasnis, D. D.; Husting, C.; Isom, H.;
Siriwardane, U. J . Org. Chem. 1993, 58, 1325. (j) Masse, C. E.; Panek,
J . S. Chem. Rev. 1995, 95, 1293. (k) Ikeda, I.; Kanematsu, K. J . Chem.
Soc., Chem. Commun. 1995, 453. (l) Koop, U.; Handke, G.; Krause, N.
Liebigs Ann. 1996, 1487. (m) Myers, A. G.; Zheng, B. J . Am. Chem.
Soc. 1996, 118, 4492. (n) Shepard, M. S.; Carreira, E. M. J . Am. Chem.
Soc. 1997, 119, 2597. (o) Urabe, H.; Takeda, T.; Hideura, D.; Sato, F.
J . Am. Chem. Soc. 1997, 119, 11295. and references therein. (p) J ung,
M. E.; Pontillo, J . Org. Lett. 1999, 1, 367. (q) Parsons, P. J .; Gold, H.;
Semple, G.; Montagnon, T. Synlett 2000. 1184. (r) J onasson, C.;
Horvath, A.; Backvall, J .-E. J . Am. Chem. Soc. 2000, 122, 9600. (s)
Wan, Z.; Nelson, S. G. J . Am. Chem. Soc. 2000, 122, 10470.
(2) (a) Marshall, J . A. Chem. Rev. 1996, 96, 31 and references
therein. (b) Urabe, H.; Takeda, T.; Hideura, D.; Sato, F. J . Am. Chem.
Soc. 1997, 119, 11295. (c) Marshal, J . A.; J ohns, B. A. J . Org. Chem,
1998, 63, 7885. (d) Wender, P. A.; Glorius, F.; Husfeld, C. O.; Langkopf,
E.; Love, J . A. J . Am. Chem. Soc. 1999, 121, 5348. (e) Arredondo, V.
M.; Tian, S.; McDonald, F. E.; Marks, T. J . J . Am. Chem. Soc. 1999,
121, 3633.
1
as judged from their H NMR spectra. The major product
presumably arose from the endo addition of the alkynyl-
lithium to the carbonyl group as the exo face in hindered
by C8 protons.7 Earlier, Mattay8 and co-workers have
reported two approaches for the preparation of allenic
compounds from optically pure propargyl derivatives, but
inseparable mixtures of allenic products were obtained
in these reactions. We found that reduction of propargyl
1c
alcohols 1 with AlH3 afforded the corresponding opti-
cally active allenes 2 stereospecifically except in the case
of propargyl alcohol 1g (R ) CH2CH2OH) which gave a
chromatographically inseparable mixture of diastereo-
mers 2g and 3g in a 5:1 ratio (66% de).
The stereochemistry of allenes 2 was determined by
means of lanthanide shift studies9 employing Eu(fod)3 as
(5) (a) Rossi, R.; Diversi, P. Synthesis 1973, 25. (b) Elsevier: C. J .
In Houben-Weyl, series Methods of Organic Chemistry; Helmchen, G.,
Hoffmann, R. W., Mulzer, J ., Schaumann, E., Eds.; Thieme: Stuttgart,
1995; Vol. E21a, p 537.
(6) (a) Nishibayashi, Y.; Singh, J . D.; Fukuzawa, S.; Uemura, S. J .
Org. Chem. 1995, 60, 4114. (b) Naruse, Y.; Watanabe, H.; Ishiyama,
Y.; Yoshida, T. J . Org. Chem. 1997, 62, 3862. (c) Mikami, K.; Yoshida,
A. Angew. Chem., Int. Ed. Engl. 1997, 36, 858. (d) Node, M.; Nishide,
K.; Fujiwara, T.; Ichihashi, S. Chem. Commun. 1998, 2363.
(7) Brittelli, D. R.; Boswell, G. A. J . Org. Chem. 1981, 46, 312.
(8) Mattay, J .; Conrads, M.; Runsink, J . Synthesis 1988, 595.
(9) Morrill, T. C. Lanthanide Shift Reagents in Stereochemical
Analysis; VCH: New York, 1986.
(3) (a) Rona, P.; Crabbe, P. J . Am. Chem. Soc. 1969, 91, 3289. (b)
Bruneau, C.; Dixneuf, P. H. In Comprehensive Organic Functional
Group Transformations; Katritzky, A. P., Meth-Cohn, O., Rees, C. W.,
Eds.: Pergamon Press: New York, 1997; Vol. 1, Ch. 1.20, pp 953-
995.
(4) (a) Mori, K.; Nukada, T.; Ebata, T. Tetrahedron 1981, 37, 1343.
(b) Cooper, G. F.; Wren, D. L.; J ackson D. Y.; Beard C. C.; Galeazzi,
E.; Van Horn, A. R.; Li, T. T. J . Org. Chem. 1993, 58, 4280.
10.1021/jo016201i CCC: $22.00 © 2002 American Chemical Society
Published on Web 01/25/2002