R. Andreu et al. / Tetrahedron Letters 42 (2001) 875–877
877
S
S
Ar
S
S
Ar
S
S
BH
B
Ar
3
5
Ar
Ar
Ar
Scheme 4.
78, 4783–4787; (b) Parham, W. E.; Kneller, M. T. J. Org.
Chem. 1958, 23, 1702–1705.
To sum up, the pKa of the base and the dissociation of
the ion pairs play a key role on the ring-contraction of
1,4-dithiin derivatives. It is the combination of these
two factors that makes KOt-Bu the reagent of choice
for carrying out these rearrangements. Moreover, the
greater thermodynamic stability of 1,3-dithiole deriva-
tives, together with the weaker acidity of dithiafulvenes,
account for the course of these rearrangements.
8. (a) Mizuno, M.; Cava, M. P.; Garito, A. F. J. Org.
Chem. 1976, 41, 1484–1485; (b) Varma, K. S.; Sasaki, N.;
Clark, R. A.; Underhill, A. E.; Simonsen, O.; Becher, J.;
Bøwadt, S. J. Heterocyclic Chem. 1988, 25, 783–787; (c)
Andreu, R.; Gar´ın, J.; Orduna, J.; Royo, J. M. Tetra-
hedron Lett. 2000, 41, 5207–5210.
9. Msayib, K. J.; Watt, C. I. F. Chem. Soc. Rev. 1992, 21,
237–243.
10. Buess, C. M.; Brandt, V. O.; Srivastava, R. C.; Carper,
Acknowledgements
V. R. J. Heterocyclic Chem. 1972, 9, 887–889.
11. Staab, H. A.; Draeger, B. Chem. Ber. 1972, 105, 2320–
2333.
Financial support from DGESIC (MAT1999-1009-C02-
02) is gratefully acknowledged.
12. (a) Compounds 5a and 5b were obtained as (E)-isomers;
for the sake of comparison, pure (Z)-5a was also inde-
pendently prepared. See: Shafiee, A.; Lalezari, I. J. Hete-
rocyclic Chem. 1973, 10, 11–14; (b) 5c (Clausen, R. P.;
Becher, J. Tetrahedron 1996, 52, 3171–3188) was obtained
as a ca. 1:1 (E/Z) mixture.
References
1. For reviews, see: (a) Kobayashi, K.; Gajurel, C. L. Sulfur
Rep. 1986, 7, 123–152; (b) Klar, G. In Houben-Weyl
Methods of Organic Chemistry, 4th ed., vol E9a. Thieme
Verlag, 1997; pp. 250–407.
13. Akiba, K.; Ishikawa, K.; Inamoto, N. Bull. Chem. Soc.
Jpn. 1978, 51, 2674–2683.
14. Seong, S.; Marynick, D. S. J. Phys. Chem. 1994, 98,
13334–13338.
15. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria,
G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V.
G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.;
Dapprich, S.; Millan, J. M.; Daniels, A. D.; Kudin, K.
N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.;
Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.;
Adamo, C.; Clifford, S.; Ochterski, J.; Pettersson, G. A.;
Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;
Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B.
B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.;
Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challa-
combe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.;
Wong, M. W.; Andres, J. L.; Gonza´lez, C.; Head-Gor-
don, M.; Replogle, E. S.; Pople, J. A. Gaussian 98,
Revision A.9; Gaussian Inc.: Pittsburgh PA, 1998.
16. Equilibrium geometries were characterised by the absence
of imaginary frequencies in the vibrational analysis. Free
energy values were calculated at 298.15 K.
2. (a) Nakatsuji, S.; Amano, Y.; Kawamura, H.; Anzai, H.
J. Chem. Soc., Chem. Commun. 1994, 841–842; (b)
Nakatsuji, S.; Amano, Y.; Kawamura, H.; Anzai, H.
Liebigs Ann./Recueil 1997, 729–732; (c) Meline, R. L.;
Elsenbaumer, R. L. Synthesis 1997, 617–619.
3. (a) Schoufs, M.; Meyer, J.; Vermeer, P.; Brandsma, L.
Recl. Trav. Chim. Pays-Bas 1977, 96, 259–263; (b)
Caputo, R.; Longobardo, L.; Palumbo, G.; Pedatella, S.;
Giordano, F. Tetrahedron 1996, 52, 11857–11866; (c)
Bryce, M. R.; Chesney, A.; Lay, A. K.; Batsanov, A. S.;
Howard, J. A. K. J. Chem. Soc., Perkin Trans. 1 1996,
2451–2459.
4. Meline, R. L.; Elsenbaumer, R. L. J. Chem. Soc., Perkin
Trans. 1 1998, 2467–2469.
5. Satoh, J. Y.; Kuroda, C.; Yamada, T.; Sukekawa, M.;
Yamada, Y.; Takahashi, T. Chem. Lett. 1989, 2081–2082.
6. Andersen, M. L.; Nielsen, M. F.; Hammerich, O. Acta
Chem. Scand. 1995, 49, 503–514.
7. (a) Parham, W. E.; Stright, P. L. J. Am. Chem. Soc. 1956,
.