phoryl halides8,11 or Vilsmeier-Haack reagents7,8). Con-
version of 6-(oxo f halo)purine derivatives with a positive
halogen source and hexamethylphosphorus triamide
(HMPT) gave 6-(bromo or chloro)purine ribonucleosides,9
but failed with an acid-sensitive 2′-deoxynucleoside.9b We
have communicated a new functionalization of 6-oxopu-
rine nucleoside and 2′-deoxynucleoside derivatives, which
provides 6-(imidazol-1-yl) compounds in excellent yields.12
The imidazolyl group can be substituted by common
nucleophiles, but it is not displaced as readily as a
halogen. Halo-dediazoniation provides economical access
to base-functionalized nucleosides in comparison with
lithiation/stannylation procedures.13
Nu cleic Acid Rela ted Com p ou n d s. 118.
Non a qu eou s Dia zotiza tion of Am in op u r in e
Der iva tives. Con ven ien t Access to 6-Ha lo-
a n d 2,6-Dih a lop u r in e Nu cleosid es a n d
2′-Deoxyn u cleosid es w ith Acyl or Silyl
Ha lid es1
Paula Francom† and Morris J . Robins*
Department of Chemistry and Biochemistry,
Brigham Young University, Provo, Utah 84602-5700
morris_robins@byu.edu
Nitrosylation of weakly basic amines is often rate
limiting in dediazoniation, and nitrosyl halides are potent
nitrosylating agents.3b Nitrosyl halides are likely gener-
ated in situ during nonaqueous diazotization of aminopu-
rine nucleosides with antimony trihalides and a nitrite
source.4,5 However, diazotization/dediazoniation mecha-
nisms can be complex and are influenced to a significant
degree by minor changes in reaction conditions.5 Anti-
mony(III) halides are effective catalysts for diazotization/
halo-dediazoniation, and have Lewis acidic properties as
well as serving as halogen donors. Because antimony
compounds are toxic and SbCl3 has been shown to bind
to DNA,14 efficient halo-dediazoniation procedures that
do not employ SbX3 are needed.5
Received September 30, 2002
Abstr a ct: Treatment of 9-(2,3,5-tri-O-acetyl-â-D-ribofuran-
osyl)-2-amino-6-chloropurine (1) with TMS-Cl and benzyl-
triethylammonium nitrite (BTEA-NO2) in dichloromethane
gave the crystalline 2,6-dichloropurine nucleoside 2, and
acetyl chloride/BTEA-NO2 was equally effective (∼85%,
without chromatography). TMS-Br/tert-butyl nitrite/dibro-
momethane gave crystalline 2-bromo-6-chloro analogue 3
(85%). (Chloro or bromo)-dediazoniation of 3′,5′-di-O-acetyl-
2′-deoxyadenosine (4) gave the 6-[chloro (5, 63%) or bromo
(6, 80%)]purine deoxynucleosides, and 2′,3′,5′-tri-O-acetyl-
adenosine (8) was converted into the 6-chloropurine nucleo-
side 9 (71%).
Nitrosyl chloride, as a component of aqua regia, was
recorded in eighth-century Arabic literature,15 and in situ
generation of NOCl with acetyl chloride and nitrous acid
or alkyl nitrites replaced aqua regia a millenium later.16
Generation of NOCl with AlCl3, PCl3, AsCl3, or TiCl4 is
known,17,18 and such sources have been used for in situ
diazotization of aliphatic amines.19 Generation of NOCl
from silicon chlorides and alkyl nitrites was noted in
early patent literature,15 and TMS-Cl/MX has been used
for halo-dediazoniation of aryl triazenes.20 TMS-Cl, NaNO2,
and phase transfer agents have been used for deoxima-
tion of aldehyde and ketone oximes21a as well as halo-
In tr od u ction
Nonaqueous diazotization/halo-dediazoniations2,3 pro-
vide efficient transformations of (amino f halo)purine
nucleosides.4,5 Halogen-functionalized derivatives can be
converted into biologically important analogues by nu-
cleophilic aromatic displacement6-9 and organometallic
cross-coupling chemistry.10 Halo-dediazoniations of ami-
nopurines can be performed under milder conditions4,5
than halo-deoxygenation of oxopurine derivatives (phos-
† Present address: Biota, Inc., Carlsbad, CA.
(1) (a) Patent application filed. (b) Paper 117: Miles, R. W.; Nielsen,
L. P. C.; Ewing, G. J .; Yin, D.; Borchardt, R. T.; Robins, M. J . J . Org.
Chem. 2002, 67, 8258-8260.
(10) (a) Matsuda, A.; Shinozaki, M.; Yamaguchi, T.; Homma, H.;
Nomato, R.; Miyasaka, T.; Watanabe, Y.; Abiru, T. J . Med. Chem. 1992,
35, 241-252. (b) Lakshman, M. K.; Keeler, J . C.; Hilmer, J . H.; Martin,
J . Q. J . Am. Chem. Soc. 1999, 121, 6090-6091. (c) Hocek, M.; Holy´,
A.; Votruba, I.; Dvorˇa´kova´, H. Collect. Czech. Chem. Commun. 2001,
66, 483-499. (d) Ve´liz, E. A.; Stephens, O. M.; Beal, P. A. Org. Lett.
2001, 3, 2969-2972.
(2) Bunnett’s nomenclature3 is used. Replacement of a diazonium
species by another group is termed dediazoniation regardless of
mechanism. The name of the entering group is added as a prefix (e.g.,
chloro-dediazoniation and bromo-dediazoniation).
(3) (a) Zollinger, H. Angew. Chem., Int. Ed. Engl. 1978, 17, 141-
150. (b) Zollinger H. Diazo Chemistry I. Aromatic and Heteroaromatic
Compounds; VCH: New York, 1994.
(11) Gerster, J . F.; Robins, R. K. J . Org. Chem. 1966, 31, 3258-
3262.
(12) Lin, X.; Robins, M. J . Org. Lett. 2000, 2, 3497-3499.
(13) Kato, K.; Hayakawa, H.; Tanaka, H.; Kumamoto, H.; Shindoh,
S.; Shuto, S.; Miyasaka, T. J . Org. Chem. 1997, 62, 6833-6841.
(14) Huang, H.; Shu, S. C.; Shih, J . H.; Kuo, C. J .; Chiu, I. D.
Toxicology 1998, 129, 113-123.
(4) (a) Robins, M. J .; Uznanski, B. Can. J . Chem. 1981, 59, 2608-
2611. (b) Robins, M. J .; Wnuk, S. F. In Encyclopedia of Reagents for
Organic Synthesis; Paquette, L. A., Ed.; Wiley: Chichester, UK, 1995;
Vol. 1, pp 205-206. (c) Nair, V.; Richardson, S. G. Synthesis 1982,
670-672.
(5) For background discussion and references see: Francom, P.;
J aneba, Z.; Shibuya, S.; Robins, M. J . J . Org. Chem., 2002, 67, 6788-
6796.
(15) Beckham, L. J .; Fessler, W. A.; Kise, M. A. Chem. Rev. 1951,
48, 319-396.
(16) (a) Weber, C. O. Ber. 1902, 35, 1947-1951. (b) Klages, A. Ber.
1902, 35, 2245-2262.
(6) J ohnson, J . A., J r.; Thomas H. J .; Schaeffer, H. J . J . Am. Chem.
Soc. 1958, 80, 699-702.
(17) Noyes, W. A. J . Am. Chem. Soc. 1925, 47, 2159-2164.
(18) Partington, J . R.; Whynes, A. L. J . Chem. Soc. 1949, 3135-
3141.
(7) Robins, M. J .; Basom, G. L. Can. J . Chem. 1973, 51, 3161-3169
and references therein.
(19) Doyle, M. P.; Bosch, R. J .; Seites, P. G. J . Org. Chem. 1978, 43,
4120-4125.
(20) Ku, H.; Barrio, J . R. J . Org. Chem. 1981, 46, 5239-5241.
(21) (a) Lee, J . G.; Kwak, K. H.; Hwang, J . P. Tetrahedron Lett. 1990,
31, 6677-6680. (b) Lee, J . G.; Cha, H. T. Tetrahedron Lett. 1992, 33,
3167-3168.
(8) Srivastava, P. C.; Robins, R. K.; Meyer, R. B., J r. In Chemistry
of Nucleosides and Nucleotides; Townsend, L. B., Ed.; Plenum: New
York, 1988; Vol. 1, pp 113-281.
(9) (a) Ve´liz, E. A.; Beal, P. A. Tetrahedron Lett. 2000, 41, 1695-
1697. (b) Ve´liz, E. A.; Beal P. A. J . Org. Chem. 2001, 66, 8592-8598.
10.1021/jo020625a CCC: $25.00 © 2003 American Chemical Society
Published on Web 12/31/2002
666
J . Org. Chem. 2003, 68, 666-669